以下是对《电路基础》第2章基本定律的详细内容讲解:
2.1引言
- 内容概述:这部分内容主要是为整章的基本定律学习做铺垫,强调了电路基本定律在电路分析中的核心地位。通过介绍电路理论从简单到复杂的发展过程,让读者认识到基本定律是理解和分析各种电路现象的基石。
- 目的:帮助读者建立起对电路基本定律学习的重要性的认识,为后续深入学习具体定律做好心理和知识背景上的准备。
2.2欧姆定律
- 内容概述
- 定义:欧姆定律是电路分析中最基本的定律之一,它表明在一个电阻元件中,电流 I I I 与电压 U U U 成正比,与电阻 R R R 成反比,数学表达式为 I = U R I = \frac{U}{R} I=RU,也可以写成 U = I R U = IR U=IR 或 R = U I R=\frac{U}{I} R=IU。
- 线性关系:这种电流 - 电压关系是线性的,在 U − I U - I U−I 平面上表现为一条通过原点的直线,直线的斜率就是电阻 R R R 的倒数(电导 G = 1 R G=\frac{1}{R} G=R1)。
- 适用范围:欧姆定律适用于线性电阻,对于非线性电阻(如半导体器件等),其电流 - 电压关系不满足简单的线性关系,但在某些特定的工作区间可以近似用欧姆定律来分析。
- 示例:假设有一个电阻 R = 10 Ω R = 10\Omega R=10Ω,两端电压 U = 20 V U = 20V U=20V,根据欧姆定律 I = U R = 20 V 10 Ω = 2 A I=\frac{U}{R}=\frac{20V}{10\Omega}=2A I=RU=10Ω20V=2A,即通过该电阻的电流为2A。
2.3节点、支路和回路
- 内容概述
- 节点:是电路中三条或三条以上支路的连接点。在电路分析中,节点是一个重要的概念,它是电流的汇合和分流点。
- 支路:电路中的每一个分支,一个支路可以是一个电阻、一个电源或者它们的组合,支路中的电流是相同的。
- 回路:是由支路组成的闭合路径,在一个回路中,沿着回路方向绕行一周,电压的代数和为零(这是基尔霍夫电压定律的基础)。
- 示例:在一个简单的串联电路中,有一个电源和两个电阻,电源和两个电阻分别构成三条支路,连接电源和电阻的两个端点就是节点,整个电路形成一个回路。
2.4基尔霍夫定律
- 内容概述
- 基尔霍夫电流定律(KCL):在任何一个节点处,流入节点的电流之和等于流出节点的电流之和。数学表达式为 ∑ k = 1 n I k = 0 \sum_{k = 1}^{n}I_{k}=0 ∑k=1nIk=0,其中 I k I_{k} Ik 是连接到节点的第 k k k 条支路的电流,规定流入节点的电流为正,流出节点的电流为负。
- 基尔霍夫电压定律(KVL):在任何一个闭合回路中,各段电压的代数和等于零。数学表达式为 ∑ k = 1 m U k = 0 \sum_{k = 1}^{m}U_{k}=0 ∑k=1mUk=0,其中 U k U_{k} Uk 是回路中第 k k k 个元件两端的电压,在确定电压正负时,需要先规定一个回路的绕行方向,当电压方向与绕行方向一致时取正,反之取负。
- 示例
- KCL示例:在一个有三条支路的节点处,支路电流分别为 I 1 = 2 A I_1 = 2A I1=2A(流入), I 2 = 3 A I_2 = 3A I2=3A(流出), I 3 I_3 I3(流出),根据KCL, I 1 = I 2 + I 3 I_1 = I_2+I_3 I1=I2+I3,所以 I 3 = I 1 − I 2 = 2 A − 3 A = − 1 A I_3 = I_1 - I_2 = 2A - 3A=-1A I3=I1−I2=2A−3A=−1A,负号表示 I 3 I_3 I3 的实际方向是流出节点。
- KVL示例:在一个由电源 E E E、电阻 R 1 R_1 R1 和 R 2 R_2 R2 组成的串联回路中,规定回路绕行方向为顺时针。电源电压 E E E 方向与绕行方向相同取正,电阻 R 1 R_1 R1 和 R 2 R_2 R2 上的电压降方向与绕行方向相反取负,根据KVL, E − I R 1 − I R 2 = 0 E - I R_1- I R_2 = 0 E−IR1−IR2=0,这里 I I I 是回路中的电流。
2.5串联电阻与分压
- 内容概述
- 串联电阻特性:当电阻串联时,总电阻等于各个串联电阻之和,即 R t o t a l = R 1 + R 2 + ⋯ + R n R_{total}=R_1 + R_2+\cdots+R_n Rtotal=R1+R2+⋯+Rn。串联电阻中通过每个电阻的电流是相同的。
- 分压原理:在串联电路中,电压按照电阻的比例分配。例如,对于两个串联电阻 R 1 R_1 R1 和 R 2 R_2 R2,总电压为 U U U,则电阻 R 1 R_1 R1 两端的电压 U 1 = R 1 R 1 + R 2 U U_1=\frac{R_1}{R_1 + R_2}U U1=R1+R2R1U,电阻 R 2 R_2 R2 两端的电压 U 2 = R 2 R 1 + R 2 U U_2=\frac{R_2}{R_1 + R_2}U U2=R1+R2R2U。
- 示例:有两个串联电阻 R 1 = 20 Ω R_1 = 20\Omega R1=20Ω, R 2 = 30 Ω R_2 = 30\Omega R2=30Ω,总电压 U = 50 V U = 50V U=50V。总电阻 R = R 1 + R 2 = 20 Ω + 30 Ω = 50 Ω R = R_1+R_2 = 20\Omega + 30\Omega = 50\Omega R=R1+R2=20Ω+30Ω=50Ω。根据分压原理, U 1 = R 1 R U = 20 Ω 50 Ω × 50 V = 20 V U_1=\frac{R_1}{R}U=\frac{20\Omega}{50\Omega}\times50V = 20V U1=RR1U=50Ω20Ω×50V=20V, U 2 = R 2 R U = 30 Ω 50 Ω × 50 V = 30 V U_2=\frac{R_2}{R}U=\frac{30\Omega}{50\Omega}\times50V = 30V U2=RR2U=50Ω30Ω×50V=30V。
2.6并联电阻与分流
- 内容概述
- 并联电阻特性:当电阻并联时,总电阻的倒数等于各个并联电阻倒数之和,即 1 R t o t a l = 1 R 1 + 1 R 2 + ⋯ + 1 R n \frac{1}{R_{total}}=\frac{1}{R_1}+\frac{1}{R_2}+\cdots+\frac{1}{R_n} Rtotal1=R11+R21+⋯+Rn1。并联电阻两端的电压是相同的。
- 分流原理:对于两个并联电阻 R 1 R_1 R1 和 R 2 R_2 R2,总电流为 I I I,则通过电阻 R 1 R_1 R1 的电流 I 1 = R 2 R 1 + R 2 I I_1=\frac{R_2}{R_1 + R_2}I I1=R1+R2R2I,通过电阻 R 2 R_2 R2 的电流 I 2 = R 1 R 1 + R 2 I I_2=\frac{R_1}{R_1 + R_2}I I2=R1+R2R1I。
- 示例:有两个并联电阻 R 1 = 20 Ω R_1 = 20\Omega R1=20Ω, R 2 = 30 Ω R_2 = 30\Omega R2=30Ω,总电流 I = 5 A I = 5A I=5A。首先求总电阻, 1 R = 1 R 1 + 1 R 2 = 1 20 Ω + 1 30 Ω \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}=\frac{1}{20\Omega}+\frac{1}{30\Omega} R1=R11+R21=20Ω1+30Ω1,解得 R = 12 Ω R = 12\Omega R=12Ω。根据分流原理, I 1 = R 2 R 1 + R 2 I = 30 Ω 20 Ω + 30 Ω × 5 A = 3 A I_1=\frac{R_2}{R_1 + R_2}I=\frac{30\Omega}{20\Omega + 30\Omega}\times5A = 3A I1=R1+R2R2I=20Ω+30Ω30Ω×5A=3A, I 2 = R 1 R 1 + R 2 I = 20 Ω 20 Ω + 30 Ω × 5 A = 2 A I_2=\frac{R_1}{R_1 + R_2}I=\frac{20\Omega}{20\Omega + 30\Omega}\times5A = 2A I2=R1+R2R1I=20Ω+30Ω20Ω×5A=2A。
2.7星形 - 三角形变换
- 内容概述
- 变换目的:在复杂的电路分析中,有时将星形(Y形)连接的电阻网络转换为三角形(△形)连接,或者反之,可以简化电路的分析。
- 变换公式:对于星形连接的电阻 R a R_a Ra、 R b R_b Rb、 R c R_c Rc 转换为三角形连接的电阻 R A B R_{AB} RAB、 R B C R_{BC} RBC、 R C A R_{CA} RCA,有 R A B = R a R b + R b R c + R c R a R c R_{AB}=\frac{R_aR_b + R_bR_c + R_cR_a}{R_c} RAB=RcRaRb+RbRc+RcRa, R B C = R a R b + R b R c + R c R a R a R_{BC}=\frac{R_aR_b + R_bR_c + R_cR_a}{R_a} RBC=RaRaRb+RbRc+RcRa, R C A = R a R b + R b R c + R c R a R b R_{CA}=\frac{R_aR_b + R_bR_c + R_cR_a}{R_b} RCA=RbRaRb+RbRc+RcRa;反之,对于三角形连接的电阻转换为星形连接的电阻,有 R a = R A B R C A R A B + R B C + R C A R_a=\frac{R_{AB}R_{CA}}{R_{AB}+R_{BC}+R_{CA}} Ra=RAB+RBC+RCARABRCA, R b = R A B R B C R A B + R B C + R C A R_b=\frac{R_{AB}R_{BC}}{R_{AB}+R_{BC}+R_{CA}} Rb=RAB+RBC+RCARABRBC, R c = R B C R C A R A B + R B C + R C A R_c=\frac{R_{BC}R_{CA}}{R_{AB}+R_{BC}+R_{CA}} Rc=RAB+RBC+RCARBCRCA。
- 示例:假设有一个星形连接的电阻网络, R a = 10 Ω R_a = 10\Omega Ra=10Ω, R b = 20 Ω R_b = 20\Omega Rb=20Ω, R c = 30 Ω R_c = 30\Omega Rc=30Ω,将其转换为三角形连接。根据公式, R A B = R a R b + R b R c + R c R a R c = 10 Ω × 20 Ω + 20 Ω × 30 Ω + 30 Ω × 10 Ω 30 Ω = 200 Ω + 600 Ω + 300 Ω 30 Ω = 1100 Ω 30 Ω ≈ 36.7 Ω R_{AB}=\frac{R_aR_b + R_bR_c + R_cR_a}{R_c}=\frac{10\Omega\times20\Omega + 20\Omega\times30\Omega + 30\Omega\times10\Omega}{30\Omega}= \frac{200\Omega + 600\Omega + 300\Omega}{30\Omega}= \frac{1100\Omega}{30\Omega}\approx36.7\Omega RAB=RcRaRb+RbRc+RcRa=30Ω10Ω×20Ω+20Ω×30Ω+30Ω×10Ω=30Ω200Ω+600Ω+300Ω=30Ω1100Ω≈36.7Ω,同理可计算出 R B C R_{BC} RBC 和 R C A R_{CA} RCA。
2.8应用
2.8.1照明系统
- 内容概述:在照明系统设计中,需要考虑灯具的电阻(或功率)、电源电压以及灯具之间的连接方式(串联或并联)。通过串联电阻分压和并联电阻分流的原理来确定每个灯具两端的电压和通过的电流,从而保证灯具正常工作。例如,在串联照明系统中,如果一个灯具损坏(电阻变为无穷大),整个电路会断路;而在并联照明系统中,一个灯具损坏不会影响其他灯具的正常工作。
- 示例:假设有一个由三个相同灯泡(每个灯泡电阻为 R R R)组成的照明系统,电源电压为 U U U。如果是串联连接,总电阻为 3 R 3R 3R,通过每个灯泡的电流为 I = U 3 R I=\frac{U}{3R} I=3RU,每个灯泡两端的电压为 U 3 \frac{U}{3} 3U;如果是并联连接,总电阻为 R 3 \frac{R}{3} 3R,通过每个灯泡的电流为 I = U R I=\frac{U}{R} I=RU,每个灯泡两端的电压为 U U U。
2.8.2直流电表的设计
- 内容概述:在直流电表设计中,利用串联电阻分压和并联电阻分流原理来扩大量程。对于电压表,通过串联一个高电阻,使大部分电压降落在串联电阻上,从而可以测量更高的电压;对于电流表,通过并联一个小电阻(分流电阻),使大部分电流通过分流电阻,从而可以测量更大的电流。
- 示例:要将一个量程为 I g I_g Ig、内阻为 R g R_g Rg 的电流表改装成量程为 I I I 的电流表,需要并联的分流电阻 R s = I g R g I − I g R_s=\frac{I_gR_g}{I - I_g} Rs=I−IgIgRg。要将一个量程为 U g U_g Ug、内阻为 R g R_g Rg 的电压表改装成量程为 U U U 的电压表,需要串联的电阻 R s = U − U g U g R g R_s=\frac{U - U_g}{U_g}R_g Rs=UgU−UgRg。
2.9小结
- 内容概述:这部分对整章内容进行了总结,强调了欧姆定律、基尔霍夫定律、串联和并联电阻的特性以及它们的应用在电路分析中的重要性。这些基本定律和概念是后续学习更复杂电路(如交流电路、动态电路等)的基础。同时,小结也可能提及了这些定律在实际工程和电子设备中的广泛应用,如电路故障诊断、电力系统设计、电子仪器制造等领域。