- 三相电源
- 4.1.1三相电源的产生
- 三相电源一般是由三相发电机产生的。三相发电机主要由定子和转子两部分组成。定子上有A相、B相和C相三个绕组,它们在空间位置上彼此相差120°电角度。当转子以均匀角速度ω旋转时,根据电磁感应定律,定子的三个绕组中就会感应出电动势。由于三个绕组在空间位置上的差异,它们感应出的电动势在时间上也彼此相差120°。例如,设A相电动势的表达式为 e A = E m sin ( ω t ) e_{A}=E_{m}\sin(\omega t) eA=Emsin(ωt),那么B相电动势 e B = E m sin ( ω t − 12 0 ∘ ) e_{B}=E_{m}\sin(\omega t - 120^{\circ}) eB=Emsin(ωt−120∘),C相电动势 e C = E m sin ( ω t + 12 0 ∘ ) e_{C}=E_{m}\sin(\omega t+ 120^{\circ}) eC=Emsin(ωt+120∘)。
- 4.1.2三相电源的连接方式(星形连接与三角形连接)
- 星形连接(Y连接):将三相电源的末端(如A相、B相、C相的末端X、Y、Z)连接在一起,形成一个中性点N,从三个首端(A、B、C)引出三根导线,这种连接方式称为星形连接。线电压是相电压的 3 \sqrt{3} 3倍,且线电压超前相电压30°。例如,若相电压有效值为 U P U_{P} UP,则线电压有效值 U L = 3 U P U_{L}=\sqrt{3}U_{P} UL=3UP。
- 三角形连接(△连接):将三相电源的A相的末端X与B相的首端B连接,B相的末端Y与C相的首端C连接,C相的末端Z与A相的首端A连接,然后从三个连接点引出三根导线。在三角形连接中,线电压等于相电压,即 U L = U P U_{L}=U_{P} UL=UP。
- 4.1.3三相电源的相电压与线电压关系
- 在星形连接中,线电压 U A B U_{AB} UAB、 U B C U_{BC} UBC、 U C A U_{CA} UCA与相电压 U A U_{A} UA、 U B U_{B} UB、 U C U_{C} UC的关系为: U A B = 3 U A ∠ 3 0 ∘ U_{AB}=\sqrt{3}U_{A}\angle30^{\circ} UAB=3UA∠30∘, U B C = 3 U B ∠ 3 0 ∘ U_{BC}=\sqrt{3}U_{B}\angle30^{\circ} UBC=3UB∠30∘, U C A = 3 U C ∠ 3 0 ∘ U_{CA}=\sqrt{3}U_{C}\angle30^{\circ} UCA=3UC∠30∘。在三角形连接中,线电压等于相电压,这是因为相电压直接作为线电压输出。
- 4.1.1三相电源的产生
- 三相负载
- 4.2.1三相负载的连接方式(星形连接与三角形连接)
- 星形连接(Y连接):将三相负载的一端连接在一起形成中性点,另一端分别接到三相电源的三根相线上。这种连接方式下,如果三相负载对称(即三个负载的阻抗大小相等,阻抗角也相等),则中性点电位等于电源中性点电位。
- 三角形连接(△连接):将三相负载首尾依次相连,然后从三个连接点分别接到三相电源的三根相线上。这种连接方式下,相电压等于线电压。
- 4.2.2三相负载的相电流与线电流关系
- 在星形连接中,线电流等于相电流,即 I L = I P I_{L}=I_{P} IL=IP。在三角形连接中,线电流是相电流的 3 \sqrt{3} 3倍,且线电流滞后相电流30°。例如,若相电流有效值为 I P I_{P} IP,则线电流有效值 I L = 3 I P I_{L}=\sqrt{3}I_{P} IL=3IP。
- 4.2.1三相负载的连接方式(星形连接与三角形连接)
- 三相电路的功率
- 4.3.1对称三相电路的功率计算
- 对于对称三相电路,三相总功率 P = 3 U P I P cos φ P = 3U_{P}I_{P}\cos\varphi P=3UPIPcosφ,其中 U P U_{P} UP是相电压有效值, I P I_{P} IP是相电流有效值, φ \varphi φ是相电压与相电流的相位差。由于在星形连接中 U L = 3 U P U_{L}=\sqrt{3}U_{P} UL=3UP, I L = I P I_{L}=I_{P} IL=IP,在三角形连接中 U L = U P U_{L}=U_{P} UL=UP, I L = 3 I P I_{L}=\sqrt{3}I_{P} IL=3IP,所以也可以写成 P = 3 U L I L cos φ P=\sqrt{3}U_{L}I_{L}\cos\varphi P=3ULILcosφ。例如,已知某对称三相电路线电压 U L = 380 V U_{L}=380V UL=380V,线电流 I L = 10 A I_{L}=10A IL=10A,功率因数 cos φ = 0.8 \cos\varphi = 0.8 cosφ=0.8,则三相功率 P = 3 × 380 × 10 × 0.8 ≈ 5265.28 W P=\sqrt{3}\times380\times10\times0.8\approx5265.28W P=3×380×10×0.8≈5265.28W。
- 4.3.2不对称三相电路的功率计算
- 对于不对称三相电路,需要分别计算每一相的功率,然后将三相功率相加。即 P = P A + P B + P C P = P_{A}+P_{B}+P_{C} P=PA+PB+PC,其中 P A = U A I A cos φ A P_{A}=U_{A}I_{A}\cos\varphi_{A} PA=UAIAcosφA, P B = U B I B cos φ B P_{B}=U_{B}I_{B}\cos\varphi_{B} PB=UBIBcosφB, P C = U C I C cos φ C P_{C}=U_{C}I_{C}\cos\varphi_{C} PC=UCICcosφC, U A U_{A} UA、 U B U_{B} UB、 U C U_{C} UC是三相相电压有效值, I A I_{A} IA、 I B I_{B} IB、 I C I_{C} IC是三相相电流有效值, φ A \varphi_{A} φA、 φ B \varphi_{B} φB、 φ C \varphi_{C} φC是三相相电压与相电流的相位差。
- 4.3.1对称三相电路的功率计算
- 三相电路的分析方法
- 4.4.1对称三相电路的分析(采用一相计算法)
- 对于对称三相电路,由于三相的情况是对称的,所以可以只分析一相(通常是A相)的情况。根据一相的计算结果,可以推导出其他两相的电压、电流等参数。例如,在对称星形连接的三相电路中,已知电源相电压 U A U_{A} UA和负载阻抗 Z Z Z,则A相电流 I A = U A Z I_{A}=\frac{U_{A}}{Z} IA=ZUA,B相电流 I B = I A ∠ − 12 0 ∘ I_{B}=I_{A}\angle - 120^{\circ} IB=IA∠−120∘,C相电流 I C = I A ∠ 12 0 ∘ I_{C}=I_{A}\angle120^{\circ} IC=IA∠120∘。
- 4.4.2不对称三相电路的分析(节点电压法等)
- 对于不对称三相电路,常用的分析方法有节点电压法等。节点电压法是根据基尔霍夫电流定律(KCL)列写节点电流方程来求解节点电压,进而求出各支路电流。例如,对于一个有三个节点的不对称三相电路,设三个节点电压为 U n 1 U_{n1} Un1、 U n 2 U_{n2} Un2、 U n 3 U_{n3} Un3,根据KCL对每个节点列方程,然后联立求解这些方程,得到节点电压,再根据欧姆定律求出各支路电流。
- 4.4.1对称三相电路的分析(采用一相计算法)
04-24
04-24
04-24