好的,以下是关于 LeetCode 第 311 题“稀疏矩阵的乘法”的详细解答:
1. 题目信息
题号.题目名称:311. 稀疏矩阵的乘法
2. 题目叙述
给你两个 稀疏矩阵 A
和 B
,请你返回 AB
的结果。你可以默认 A
的列数等于 B
的行数。
稀疏矩阵指的是矩阵中大部分元素为 0 的矩阵。你可以使用三元组列表来表示稀疏矩阵:
- 三元组
(i, j, val)
表示矩阵中第i
行、第j
列的值为val
。 - 此外,你也可以使用二维数组来表示该矩阵。
示例:
输入:
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
输出:
[
[ 7, 0, 0 ],
[-7, 0, 3 ]
]
3. 模式识别
这道题主要是关于矩阵乘法的操作,由于矩阵是稀疏矩阵,所以需要考虑如何高效地处理其中大量的零元素,避免不必要的计算。可以通过遍历矩阵的非零元素来进行乘法运算,而不是像普通矩阵乘法那样遍历所有元素。
4. 考点分析
- 矩阵乘法的基本原理。
- 稀疏矩阵的存储和处理方式。
- 对算法时间复杂度和空间复杂度的优化。
5. 所有解法
- 普通矩阵乘法:遍历矩阵
A
的每一行和矩阵B
的每一列,进行乘法和累加运算。时间复杂度为 O ( m ∗ n ∗ k ) O(m * n * k) O(m∗n∗k),其中m
是A
的行数,n
是B
的列数,k
是A
的列数(等于B
的行数)。这种方法没有利用稀疏矩阵的特性,效率较低。 - 稀疏矩阵乘法:只遍历矩阵
A
和B
的非零元素,进行乘法和累加运算,从而减少计算量。这是最优解法。
6. 最优解法(稀疏矩阵乘法)的C语言代码
#include <stdio.h>
#include <stdlib.h>
// 计算稀疏矩阵的乘法
int** multiply(int** A, int ArowSize