311. 稀疏矩阵的乘法

好的,以下是关于 LeetCode 第 311 题“稀疏矩阵的乘法”的详细解答:

1. 题目信息

题号.题目名称:311. 稀疏矩阵的乘法

2. 题目叙述

给你两个 稀疏矩阵 AB,请你返回 AB 的结果。你可以默认 A 的列数等于 B 的行数。

稀疏矩阵指的是矩阵中大部分元素为 0 的矩阵。你可以使用三元组列表来表示稀疏矩阵:

  • 三元组 (i, j, val) 表示矩阵中第 i 行、第 j 列的值为 val
  • 此外,你也可以使用二维数组来表示该矩阵。

示例:
输入:

A = [
  [ 1, 0, 0],
  [-1, 0, 3]
]
B = [
  [ 7, 0, 0 ],
  [ 0, 0, 0 ],
  [ 0, 0, 1 ]
]

输出:

[
  [ 7, 0, 0 ],
  [-7, 0, 3 ]
]

3. 模式识别

这道题主要是关于矩阵乘法的操作,由于矩阵是稀疏矩阵,所以需要考虑如何高效地处理其中大量的零元素,避免不必要的计算。可以通过遍历矩阵的非零元素来进行乘法运算,而不是像普通矩阵乘法那样遍历所有元素。

4. 考点分析

  • 矩阵乘法的基本原理。
  • 稀疏矩阵的存储和处理方式。
  • 对算法时间复杂度和空间复杂度的优化。

5. 所有解法

  • 普通矩阵乘法:遍历矩阵 A 的每一行和矩阵 B 的每一列,进行乘法和累加运算。时间复杂度为 O ( m ∗ n ∗ k ) O(m * n * k) O(mnk),其中 mA 的行数,nB 的列数,kA 的列数(等于 B 的行数)。这种方法没有利用稀疏矩阵的特性,效率较低。
  • 稀疏矩阵乘法:只遍历矩阵 AB 的非零元素,进行乘法和累加运算,从而减少计算量。这是最优解法。

6. 最优解法(稀疏矩阵乘法)的C语言代码

#include <stdio.h>
#include <stdlib.h>

// 计算稀疏矩阵的乘法
int** multiply(int** A, int ArowSize
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值