1. 题号和题目名称
- 最小好进制
2. 题目叙述
对于给定的整数 n
,如果 n
的 k
(k >= 2
)进制数的所有数位全为 1
,则称 k
(k >= 2
)是 n
的一个好进制。
以字符串的形式给出 n
,以字符串的形式返回 n
的最小好进制。
示例 1:
输入:n = "13"
输出:"3"
解释:13 的 3 进制表示是 "111"。
示例 2:
输入:n = "4681"
输出:"8"
解释:4681 的 8 进制表示是 "11111"。
示例 3:
输入:n = "1000000000000000000"
输出:"999999999999999999"
解释:1000000000000000000 的 999999999999999999 进制表示是 "11"。
3. 模式识别
本题可以通过数学方法来解决。根据好进制的定义,我们可以将 n
表示为 k
进制下的数,然后通过数学推导找到最小的 k
。
4. 考点分析
- 数学推导:需要根据好进制的定义,推导出
n
与k
的关系。 - 二分查找:通过二分查找来找到满足条件的最小
k
。
5. 所有解法
- 数学推导 + 二分查找解法:这是最优解法,通过数学推导得到
n
与k
的关系,然后使用二分查找来找到最小的k
。
6. 最优解法(数学推导 + 二分查找解法)的 C 语言代码
// 函数功能:找出给定数字 n 的最小好进制,并以字符串形式返回
// 参数 n:一个字符串,表示要处理的数字
char* smallestGoodBase(char* n) {
// 将输入的字符串 n 转换为长整型数值 nVal
long nVal = atol(n);
// 计算最大可能的位数 mMax。因为如果一个数 n 用 k 进制表示为 m 位全 1,
// 即 n = 1 + k + k^2 + ... + k^(m - 1),当 k = 2 时,m 达到最大,
// 此时 n 约等于 2^m,所以 mMax = floor(log(nVal) / log(2))
int mMax = floor(log(nVal) / log