483. 最小好进制

1. 题号和题目名称

  1. 最小好进制

2. 题目叙述

对于给定的整数 n,如果 nkk >= 2)进制数的所有数位全为 1,则称 kk >= 2)是 n 的一个好进制。

以字符串的形式给出 n,以字符串的形式返回 n 的最小好进制。

示例 1

输入:n = "13"
输出:"3"
解释:13 的 3 进制表示是 "111"。

示例 2

输入:n = "4681"
输出:"8"
解释:4681 的 8 进制表示是 "11111"。

示例 3

输入:n = "1000000000000000000"
输出:"999999999999999999"
解释:1000000000000000000 的 999999999999999999 进制表示是 "11"。

3. 模式识别

本题可以通过数学方法来解决。根据好进制的定义,我们可以将 n 表示为 k 进制下的数,然后通过数学推导找到最小的 k

4. 考点分析

  • 数学推导:需要根据好进制的定义,推导出 nk 的关系。
  • 二分查找:通过二分查找来找到满足条件的最小 k

5. 所有解法

  • 数学推导 + 二分查找解法:这是最优解法,通过数学推导得到 nk 的关系,然后使用二分查找来找到最小的 k

6. 最优解法(数学推导 + 二分查找解法)的 C 语言代码

// 函数功能:找出给定数字 n 的最小好进制,并以字符串形式返回
// 参数 n:一个字符串,表示要处理的数字
char* smallestGoodBase(char* n) {
   
    // 将输入的字符串 n 转换为长整型数值 nVal
    long nVal = atol(n);
    // 计算最大可能的位数 mMax。因为如果一个数 n 用 k 进制表示为 m 位全 1,
    // 即 n = 1 + k + k^2 + ... + k^(m - 1),当 k = 2 时,m 达到最大,
    // 此时 n 约等于 2^m,所以 mMax = floor(log(nVal) / log(2))
    int mMax = floor(log(nVal) / log
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请向我看齐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值