2018-2019 ACM-ICPC Pacific Northwest Regional Contest (Div. 1)DCount The Bits(dp/数位dp)

D Count The Bits

题意:

输入 k , b ( 1 ≤ k ≤ 1000 , 1 ≤ b ≤ 128 ) ; k,b(1\leq k\leq 1000,1\leq b\leq128); k,b(1k1000,1b128);
问在 [ 0 , 2 b ) [0,2^b) [0,2b)以内 k k k的倍数位为 1 1 1的个数的和。

题解1(dp):

d p [ i ] [ j ] dp[i][j] dp[i][j]表示 [ 0 , 2 i ) [0,2^i) [0,2i)以内模 k k k j j j的数的个数;
f [ i ] [ j ] f[i][j] f[i][j]表示 [ 0 , 2 i ) [0,2^i) [0,2i)以内模 k k k j j j的数的位为1个数和。
转移:
d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j − ( 1 < < i ) ] dp[i][j]=dp[i-1][j]+dp[i-1][j-(1<<i)] dp[i][j]=dp[i1][j]+dp[i1][j(1<<i)]即考虑第 i i i位为 0 0 0和为 1 1 1的情况;
f [ i ] [ j ] = f [ i − 1 ] [ j ] + f [ i − 1 ] [ j − ( 1 < < i ) ] + d p [ i − 1 ] [ j − ( 1 < < i ) ] f[i][j]=f[i-1][j]+f[i-1][j-(1<<i)]+dp[i-1][j-(1<<i)] f[i][j]=f[i1][j]+f[i1][j(1<<i)]+dp[i1][j(1<<i)]同上考虑。
代码没写。

题解2(数位dp):

d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]为到第 i i i位,模 k k k j j j,1的个数为 k k k,的方案数,然后按数位 d p dp dp套路搞搞就好了。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1009;
int k,b;
const int mod=1e9+9;
int dp[139][N][139];
int dfs(int x,int y,int cnt,bool lim){
    if(x<0)return y==0?cnt:0;
    if(!lim&&dp[x][y][cnt]!=-1)return dp[x][y][cnt];
    int sum=0;
    for(int i=0;i<=1;i++){
        sum=(sum+dfs(x-1,(y*2+i)%k,cnt+i,lim&i))%mod;
    }
    return dp[x][y][cnt]=sum;
}
int solve(){
    memset(dp,-1,sizeof(dp));
    return dfs(b-1,0,0,1);
}
signed main(){
   // freopen("tt.in","r",stdin),freopen("tt.out","w",stdout);
    cin>>k>>b;
    cout<<solve()<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值