Codeforces Round #589 (Div. 2)F. One Node is Gone(树的中心)

F. One Node is Gone

题意:

输入一个 n n n,表示一颗有 ( 1 < < n ) − 2 (1<<n)-2 (1<<n)2个节点的树;
接下来 ( 1 < < n ) − 3 (1<<n)-3 (1<<n)3行,每行输入 u , v u,v u,v,表示树边。
问它是否能由,一颗有 ( 1 < < n ) − 1 (1<<n)-1 (1<<n)1个节点的满二叉树删去一个点(删去后,它的父亲节点和儿子节点相连)变成,能的话输出删去的点的父亲节点。

题解:

很显然根节点就是树的中心;分情况讨论:
中心有两个,判断是否可行,可行的话,答案就为两个中心。
中心有一个,判断是否可行,可行的话,dfs找答案。
判断可行,找答案用dfs判断度数就好。

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=(1<<18)+9;
int n,m;
struct Edge{
    int v,nxt;
}e[N];
int head[N],cnt;
inline void add(int u,int v){
    e[cnt]=(Edge){v,head[u]};
    head[u]=cnt++;
}
int dep[N];
void dfs(int u,int fa){
    dep[u]=dep[fa]+1;
    for(int i=head[u];~i;i=e[i].nxt){
        if(e[i].v==fa)continue;
        dfs(e[i].v,u);
    }
}
int s,t,rt1,rt2;
vector<int>l;
void dfs1(int u,int fa){
    l.push_back(u);
    if(u==t){
        if(l.size()%2==0)rt1=l[l.size()/2-1],rt2=l[l.size()/2];
        else rt1=l[l.size()/2];
    }
    for(int i=head[u],v;~i;i=e[i].nxt){
        v=e[i].v;
        if(v==fa)continue;
        dfs1(v,u);
    }
    l.pop_back();
}
int ddu[N];
bool check1(int u,int fa){
    ddu[u]=0;bool flag=1;
    vector<int>dd;
    for(int i=head[u],v;~i;i=e[i].nxt){
        v=e[i].v;
        if(v==fa||v==rt1||v==rt2)continue;
        ddu[u]++;dd.push_back(v);
        if(!check1(v,u))flag=0;
    }
    if(ddu[u]!=0&&ddu[u]!=2)return 0;
    if(ddu[u]==2)if(ddu[dd[0]]!=ddu[dd[1]])return 0;
    return flag;
}
int ans;
int du[N];
bool get(int u,int fa){
    du[u]=0;bool flag=1;
    vector<int>dd;
    for(int i=head[u],v;~i;i=e[i].nxt){
        v=e[i].v;
        if(v==fa)continue;
        dd.push_back(v);
        if(!get(v,u))flag=0;
        du[u]++;
    }
    if(du[u]!=0&&du[u]!=2){if(ans)return 0;ans=u;}
    if(du[u]==2)if(du[dd[0]]!=du[dd[1]])if(ans!=dd[0]&&ans!=dd[1])return 0;
    return flag;
}
int main(){
   // freopen("tt.in","r",stdin),freopen("tt.out","w",stdout);
    cin>>n;n=(1<<n)-2;m=n-1;
    memset(head,-1,sizeof(head));
    for(int i=1,a,b;i<=m;i++){
        cin>>a>>b;add(a,b),add(b,a);
    }
    dfs(1,0);
    s=1;
    for(int i=1;i<=n;i++)if(dep[i]>dep[s])s=i;
    dfs(s,0);
    t=s;
    for(int i=1;i<=n;i++)if(dep[i]>dep[t])t=i;
    dfs1(s,0);
 //   cout<<rt1<<" "<<rt2<<endl;
    if(rt2){
        if(rt1>rt2)swap(rt1,rt2);
        bool flag=check1(rt1,0)&&check1(rt2,0);
        if(flag)cout<<2<<endl<<rt1<<" "<<rt2<<endl;
        else cout<<0<<endl;
    }else{
        bool flag=get(rt1,0);
        if(!flag)cout<<0<<endl;else cout<<1<<endl<<ans<<endl;
       // cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值