BZOJ 1093 最大半连通子图 图论 缩点+拓扑排序

给出一个定义叫做半连通图,半连通图就是一张对于任意其中两点 u , v u,v u,v,都存在某条有向路径 u − > v u->v u>v或者 v − > u v->u v>u,然后给出一个点诱导子图的定义。问你最大半连通子图有多少个点并且还要求出有多少种不同的选择方式。
半连通的最大点数实际上就是缩点后的最长链,这个是一个经典问题。对于求方案个数,我们仍然可以用DAG上dp的方法来做。每个入度为 0 0 0的点,方案数设置为 g [ u ] = 1 g[u]=1 g[u]=1。对于每次转移,若满足 f [ v ] = f [ u ] + w [ v ] f[v]=f[u]+w[v] f[v]=f[u]+w[v],则 g [ v ] = g [ u ] + g [ v ] g[v]=g[u]+g[v] g[v]=g[u]+g[v]。一个细节是重边只看作单独的一条边,这是因为题意要求的实际上是选点。
最终方案数总答案是 ∑ i = 1 n g [ i ] ∗ [ f [ u ] = m a x i = 1 n f [ i ] ] \sum_{i=1}^{n}g[i]*[f[u]=max_{i=1}^{n}f[i]] i=1ng[i][f[u]=maxi=1nf[i]]
这个题调了挺久,感觉最近状态要调整。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=LONG_LONG_MAX;
const int N=1e5+7;
const int M=1e6+7;
vector<int> G[N]; 
vector<int> go[N];
int n,m,mod;
int dfn[N],low[N],s[N],bel[N],in[N],w[N],tmp[N],top=0;
int tim=0,scc=0;
bool ins[N];
int dp1[N];
int mark[N];
ll dp2[N];
void tarjan(int u) {
	dfn[u]=low[u]=++tim;
	s[++top]=u;
	ins[u]=1;
	for(int i=0;i<G[u].size();i++) {
		int v=G[u][i];
		if(!dfn[v]) {
			tarjan(v);
			low[u]=min(low[u],low[v]);
		}
		else if(ins[v]) {
			low[u]=min(low[u],dfn[v]);
		}
	}
	if(dfn[u]==low[u]) {
		bel[u]=++scc;
		ins[u]=0;
		w[scc]=1;
		while(s[top]!=u) {
			bel[s[top]]=scc;
			ins[s[top]]=0;
			w[scc]++;
			top--;
		}
		top--;
	}
}
void solve() {
	for(int i=1;i<=n;i++) {
		if(!dfn[i]) {
			tarjan(i);
		}
	}
	for(int i=1;i<=n;i++) {
		for(int j=0;j<G[i].size();j++) {
			int u=bel[i];
			int v=bel[G[i][j]];
			if(u==v) continue; 
			go[u].push_back(v); // 重边 d 
			in[v]++;
		}
	}
	memcpy(tmp,in,sizeof(in));
}
int solve1() {
	queue<int> q;
	for(int i=1;i<=scc;i++) {
		if(!in[i]) {
			q.push(i);
			dp1[i]=w[i];
		}
	}
	while(!q.empty()) {
		int u=q.front();
		q.pop();
		for(int i=0;i<go[u].size();i++) {
			int v=go[u][i];
			dp1[v]=max(dp1[v],dp1[u]+w[v]);
			if(--in[v]==0) q.push(v);
		}
	}
	int ans=0;
	for(int i=1;i<=scc;i++)
		ans=max(ans,dp1[i]);
	return ans;
}
ll solve2() {
	queue<int> q;
	memcpy(in,tmp,sizeof(tmp));
	for(int i=1;i<=scc;i++) {
		if(!in[i]) {
			dp2[i]=1;
			q.push(i);
		}
	} 
	while(!q.empty()) {
		int u=q.front();
		q.pop();
		for(int i=0;i<go[u].size();i++) {
			int v=go[u][i];
			if(--in[v]==0) q.push(v); 
			if(mark[v]==u) continue;
			if(dp1[v]==dp1[u]+w[v]) {
				dp2[v]+=dp2[u];
				dp2[v]%=mod;
				mark[v]=u; 
			}
		}
	}
	int path=*max_element(dp1+1,dp1+1+scc);
	ll ans=0;
	for(int i=1;i<=scc;i++) {
		if(dp1[i]==path) {
			ans+=dp2[i];
			ans%=mod;
		}
	}
	return ans;
} 
int main() {
	scanf("%d%d%d",&n,&m,&mod);
	for(int i=1;i<=m;i++) {
		int u,v;
		scanf("%d%d",&u,&v);
		G[u].push_back(v);
	}
	solve();
	printf("%d\n",solve1());
	printf("%lld\n",solve2());
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值