给出一个
n
≤
200
n\leq200
n≤200的黑白矩形方阵,然后每一个格子都有黑白两种颜色,你可以任意交换两行或者两列,要使得左上到右下的对角线上全部都是黑色。求问是否存在这样的方案使其成立。
要构造出这样的
01
01
01矩阵列变换都是可以用行变换解决的。只考虑行变换的情形,左边构造
n
n
n个点,表示最终的边的编号,右边也构造
n
n
n个点,表示当前的边的编号,然后左边的点向右边所有可能的点连边,也就是满足可以使得这一列为黑的行。
然后跑二分图匹配,判断是否是最大匹配。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=LONG_LONG_MAX;
const int N=203;
int a[N][N];
int tim=0,n;
int link[N],used[N];
vector<int> G[N];
int dfs(int u) {
for(auto &v:G[u]) {
if(used[v]==tim) continue;
used[v]=tim;
if(link[v]==-1||dfs(link[v])) {
link[v]=u;
return 1;
}
}
return 0;
}
int solve() {
int ans=0;
memset(link,-1,sizeof(link));
for(int i=1;i<=n;i++) {
tim++;
if(dfs(i)) ++ans;
}
return ans;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
memset(used,0,sizeof(used));
tim=0;
for(int i=1;i<=n;i++) {
G[i].clear();
for(int j=1;j<=n;j++) {
scanf("%d",&a[i][j]);
}
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
if(a[j][i]==1) {
G[i].push_back(j);
}
}
}
int ans=solve();
if(ans==n) puts("Yes");
else puts("No");
}
return 0;
}