给出
n
n
n个柱子,然后你依次往里面加编号从
1
1
1到
n
n
n的球,但是要保证除了第一个加进去的球之外,其它所有的球都必须满足和前一个球的和是平方数。求问
n
n
n个柱子最多可以放多少个球。
当时还觉得这个题很难,想不到和网络流有什么关系。现在发现这个题是个裸的有向图最小路径覆盖,对于每个
i
<
j
i<j
i<j,若满足和为平方数就连一条有向边,每个柱子实际上就是一个路径,对于这样的有向图,每个点
u
u
u拆成两个点
u
,
u
′
u,u'
u,u′,源点连
u
u
u流量
1
1
1,
u
′
u'
u′连汇点流量
1
1
1。其余的每条边
u
u
u向
v
′
v'
v′连流量
1
1
1。总点数减去匹配数就是路径覆盖数。
这个地方一开始想到二分个数,但是二分每次都要重新连边。不妨直接枚举球的个数,这样每次只要加上这个球和相应的连边。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
namespace Dinic {
const int N=1e4+3,M=1e5+3;
int front[N],head[N],dep[N],tot=-1,n,S,T;
struct edge{ int v,nxt;ll w; }e[2*M];
void init() {
tot=-1;
for(int i=1;i<=n;i++) front[i]=-1;
}
void add(int u,int v,ll w) {
e[++tot].v=v,e[tot].w=w,e[tot].nxt=front[u],front[u]=tot;
e[++tot].v=u,e[tot].w=0,e[tot].nxt=front[v],front[v]=tot;
}
bool bfs() {
for(int i=1;i<=n;i++) dep[i]=0;
queue<int> q;
q.push(S);
dep[S]=1;
while(!q.empty()) {
int u=q.front();
q.pop();
for(int i=front[u];i!=-1;i=e[i].nxt) {
int v=e[i].v;
if(dep[v]==0&&e[i].w) {
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[T];
}
ll dfs(int cur,ll dis=1e18) {
if(cur==T) return dis;
ll flow=0,sum=0;
for(int &i=head[cur];i!=-1;i=e[i].nxt) {
int v=e[i].v;
if(dep[v]==dep[cur]+1&&e[i].w) {
flow=dfs(v,min(dis,e[i].w));
dis-=flow,sum+=flow;
e[i].w-=flow,e[i^1].w+=flow;
if(!dis) break;
}
}
return sum;
}
ll solve() {
ll ans=0;
while(bfs()) {
for(int i=1;i<=n;i++) head[i]=front[i];
ans+=dfs(S);
}
return ans;
}
int to[N];
bool used[N];
void print(int n) {
for(int i=1;i<=n;i++) {
for(int j=front[i];j!=-1;j=e[j].nxt) {
if(e[j].v==S) continue;
else if(e[j].w==0) {
to[i]=e[j].v-1600;
}
}
}
for(int i=1;i<=n;i++) {
if(used[i]) continue;
int cur=i;
while(cur) {
printf("%d ",cur);
cur=to[cur];
used[cur]=1;
}
printf("\n");
}
}
}
vector<int> lk[1601];
bool check(int x) {
int sqr=sqrt(x);
return sqr*sqr==x;
}
int main() {
int n;
for(int i=1;i<=1600;i++) {
for(int j=1;j<i;j++) {
if(check(i+j)) {
lk[i].push_back(j);
}
}
}
Dinic::n=3202;
int S=3201;
int T=3202;
Dinic::S=S;
Dinic::T=T;
Dinic::init();
scanf("%d",&n);
int sum=0,ans=0;
for(int ball=1;;ball++) {
Dinic::add(S,ball,1);
Dinic::add(ball+1600,T,1);
for(auto &x:lk[ball])
Dinic::add(x,ball+1600,1);
sum+=Dinic::solve();
if(ball-sum<=n) ans=max(ans,ball);
else break;
}
printf("%d\n",ans);
Dinic::print(ans);
return 0;
}