洛谷P1993 小K的农场 差分约束

对于 n n n个物品,给出 m m m个限制关系,分别是:
1. a a a b b b至少多种 c c c单位的作物。
2. a a a b b b至多多种 c c c单位的作物。
3. a a a b b b的作物数相等。
求问是否满足这样的一种情形,符合所有的限制关系。
不妨记 f ( ∗ ) f(*) f()表示 ∗ * 的作物数,显然各条件等价于:
1. f ( a ) − f ( b ) ≥ c f(a)-f(b)\geq c f(a)f(b)c
2. f ( b ) − f ( a ) ≥ − c f(b)-f(a)\geq-c f(b)f(a)c
3. f ( a ) − f ( b ) ≥ 0 , f ( b ) − f ( a ) ≥ 0 f(a)-f(b)\geq0,f(b)-f(a)\geq0 f(a)f(b)0f(b)f(a)0
对于每个不等式,后者向前者连边,然后求最长路。出现正环对应无解。
注意:求最长路的时候,各个点应该设置为负无穷,而不是0

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int N=1e4+7;
struct edge { int v,w; };
vector<edge> go[N]; 
int dis[N],cnt[N]; 
bool inq[N]; 
int n,m; 
bool spfa() {
	queue<int> q;
	q.push(0);
	for(int i=1;i<=n;i++)
		dis[i]=-1e9; 
	while(!q.empty()) {
		int u=q.front();
		q.pop();
		inq[u]=0;
		for(auto &e:go[u]) {
			int v=e.v,w=e.w;
			if(dis[v]<dis[u]+w) {
				dis[v]=dis[u]+w;
				if(!inq[v]) {
					inq[v]=1;
					q.push(v);
					if(++cnt[v]>=n) {
						return 0;
					}
				}
			}
		}
	}
	return 1;
}
int main() {
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++) {
		int opt,a,b,c;
		scanf("%d",&opt);
		if(opt==1) {
			scanf("%d%d%d",&a,&b,&c);
			go[b].push_back({a,c}); 
		}
		else if(opt==2) {
			scanf("%d%d%d",&a,&b,&c);
			go[a].push_back({b,-c});
		}
		else {
			scanf("%d%d",&a,&b);
			go[a].push_back({b,0});
			go[b].push_back({a,0});
		}
	}
	for(int i=1;i<=n;i++)
		go[0].push_back({i,0});
	bool ans=spfa(); 
	if(ans) puts("Yes");
	else puts("No"); 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值