你的任务是帮助Joe走出一个大火蔓延的迷宫。Joe每分钟可以走到上下左右4个方向的相邻格之一,而所有着火的格子都会往四周蔓延(即如果某个空格与着火格有公共边,则下一分钟这个空格将着火)。迷宫中有一些障碍格,Joe和火都无法进入。当Joe走到一个迷宫的边界格子时,我们认为他已经出了迷宫。求他走出迷宫的最短时间(分钟)。
分析:
由于火源也是和Joe同样的朝4个方向走的,我们把火源也看成是人,看下是否有一个空闲的边界点是Joe比火源先到达的。所以做两次BFS即可,一次是Joe的BFS,一次是所有火源的BFS,然后看是否有一个空闲的边界点是Joe比火源先到达的。
可以证明:Joe和火源同时到达某个点,那么他们肯定会一直同时到达由该点延伸的后续的所有点。
代码中用vis[i][j][0]和d[i][j][0]表示当前格子是否已经被Joe走过且Joe走到(i,j)格子的最短时间是多少.
用vis[i][j][1]和d[i][j][1]表示当前格子是否已经被火源走过,且火源走到(i,j)格子的最短时间是多少.
最后再在所有的边界中找出所有Joe可以到达的空闲格且Joe到达时间比火源到达时间早.输出最小时间即可.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
const int maxr=1000+5;
const int maxc=1000+5;
const int INF=1000000000;
int R,C;
int jr,jc;
struct cell
{
int r,c;
cell(int r,int c):r(r),c(c){}
};
char maze[maxr][maxc];
int vis[maxr][maxc][2], d[maxr][maxc][2];
int dr[]={-1,1,0,0};//对应上下左右
int dc[]={0,0,-1,1};
queue<cell> Q;
void BFS(int kind)
{
while(!Q.empty())
{
cell x= Q.front();Q.pop();
for(int dir=0;dir<4;dir++)
{
int nr=x.r+dr[dir];
int nc=x.c+dc[dir];
if(nr>=0&&nr<R&&nc>=0&&nc<C&&maze[nr][nc]=='.'&&vis[nr][nc][kind]==0)
{
vis[nr][nc][kind]=1;
d[nr][nc][kind]=1+d[x.r][x.c][kind];
Q.push(cell(nr,nc));
}
}
}
}
int ans;
void check(int r,int c)
{
if(vis[r][c][0]==1)
{
if(vis[r][c][1]==0 || (d[r][c][0]<d[r][c][1]) )
ans=min(ans,d[r][c][0]+1);//走到边界还不算出了迷宫,必须走出迷宫才算
}
}
int main()
{
int T;
scanf("%d%*c",&T);
while(T--)
{
vector<cell> Fire;//初始化火源
scanf("%d%d%*c",&R,&C);
for(int i=0;i<R;i++)
{
for(int j=0;j<C;j++)
{
maze[i][j]=getchar();
if(maze[i][j]=='J')
{
maze[i][j]='.';
jr=i;jc=j;
}
else if(maze[i][j]=='F')
{
Fire.push_back(cell(i,j));
maze[i][j]='.';
}
}
getchar();//读回车符
}
memset(vis,0,sizeof(vis));
d[jr][jc][0]=0;
vis[jr][jc][0]=1;
Q.push(cell(jr,jc));
BFS(0);//Joe走路
for(int i=0;i<Fire.size();i++)
{
d[Fire[i].r][Fire[i].c][1]=0;
vis[Fire[i].r][Fire[i].c][1]=1;
Q.push(Fire[i]);
}
BFS(1);//火源走路
ans=INF;
for(int i=0;i<R;i++){check(i,C-1); check(i,0);}
for(int i=0;i<C;i++){check(0,i); check(R-1,i);}
if(ans==INF) printf("IMPOSSIBLE\n");
else printf("%d\n",ans);
}
return 0;
}