【数学】约束优化方法:拉格朗日乘子法 与 KKT条件

本文介绍了约束优化问题的解决方法,包括等式约束和不等式约束。对于等式约束,可以使用拉格朗日乘子法;不等式约束则需要考虑KKT条件。拉格朗日乘子法通过构造拉格朗日函数将原始问题转换为无约束问题,而KKT条件为求解不等式约束提供了理论基础。
摘要由CSDN通过智能技术生成

拉格朗日乘子法与KKT条件

引言

约束条件可分为等式约束和不等式约束。如果是等式约束,可以直接利用拉格朗日乘子法(Lagrange Multiplier)求解最优值。对于不等式约束,可以转化为满足 KKT(Karush-Kuhn-Tucker) 条件后再利用拉格朗日乘子法求解。但是在一般情况下,这两个方法求得的结果只是必要条件,也就是可行解。而当目标函数是凸函数的情况下,才是充分必要条件,求得最优解

无约束优化

假设存在 f ( x ) f(x) f(x) 是定义在 R n R^n Rn 上的连续可微函数,考虑无约束优化,求: min ⁡ x f ( x ) \min_xf(x) xminf(x)
我们可以直接使它导数为 0 0 0 即可。

等式约束优化

原始问题

假设存在 f ( x ) , h i ( x ) f(x), h_i(x) f(x),hi(x) 是定义在 R n R^n Rn 上的连续可微函数,考虑等式优化,求: min ⁡ x f ( x ) s . t .      h i ( x ) = 0 , i = 1 , 2 , 3 , … , m \min_xf(x)\\ s.t.\ \ \ \ h_i(x) = 0,i=1,2,3,\dots,m xminf(x)s.t.    hi(x)=0,i=1,2,3,,m
( s . t . s.t. s.t. s u b j e c t   t o subject\ to subject to 的缩写,意为“受限于”,表示约束条件)
其中, h i ( x ) = 0 h_i(x) = 0 hi(x)=0 表示存在 m m m 条形如 h ( x ) = 0 h(x) = 0 h(x)=0 的这种约束条件。
有等式约束条件的情况下,会把解限定在一个可行域内,即同时满足所有约束条件。

求解

我们尝试去理解利用约束函数和目标函数的法向量平行的性质去解决问题:这个链接
在这里插入图片描述
我们用拉格朗日乘子法构造拉格朗日函数:
L ( x , α ) = f ( x ) + ∑ i = 1 m α i h i ( x ) \mathscr{L}(x,\alpha)=f(x) + \sum_{i=1}^m\alpha_ih_i(x) L(x,α)=f(x)+i=1mαihi(x)
其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值