约束优化方法之拉格朗日乘子法与KKT条件

本文详细介绍了约束优化问题,包括等式约束和不等式约束的处理方法。针对等式约束,通过拉格朗日乘子法寻找可行解,而面对不等式约束,则引入KKT条件,解释了拉格朗日乘子法在不等式约束下如何找到局部极小值。内容涵盖了无约束优化、等式约束优化和不等式约束优化的理论与几何直观解释。
摘要由CSDN通过智能技术生成

引言
本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值;对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解。拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解。
无约束优化
首先考虑一个不带任何约束的优化问题,对于变量 x∈RNx∈RN 的函数 f(x)f(x) ,无约束优化问题如下:
minxf(x)
该问题很好解,根据 Fermat 定理,直接找到使目标函数得 0 的点即可 即: ∇xf(x)=0∇xf(x)=0 ,
如果没有解析解的话,可以使用梯度下降或牛顿方法等迭代的手段来使 xx 沿负梯度方向逐步逼近极小值点。
等式约束优化
当目标函数加上约束条件之后,问题就变成如下形式:
minx f(x)
s.t. hi(x)=0,i=1,2,…,m

约束条件会将解的范围限定在一个可行域,此时不一定能找到使得 ∇xf(x)∇xf(x) 为 0 的点,只需找到在可行域内使得 f(x)f(x) 最小的值即可,常用的方法即为拉格朗日乘子法,该方法首先引入 Lagrange Multiplier α∈Rmα∈Rm ,构建 Lagrangian 如下&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值