一、目的
处理一个数据的多维特征输入
二、编程
当一个数据具有多维特征时,我们要将其向量化才得以一次处理多个特征
1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。
2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。
3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。我们在前两层使用relu激活,最后一层使用sigmoid激活。
4、本算法中torch.nn.Sigmoid() ,将其看作是网络的一层,而不是简单的函数使用
下面是具体代码实现:
import numpy as np
import torch
import matplotlib.pyplot as plt
# 加载训练集
xy = np.loadtxt("diabetes.csv.gz", delimiter=",", dtype=np.float32)
# 取除了最后一列的所有列
x_data = torch.from_numpy(xy[:, :-1])
# 取最后一列
y_data = torch.from_numpy((xy[:, [-1]]))
# 构造模型
class Model(torch.nn.Module):
# 构造函数
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6) # 8维到6维
self.linear2 = torch.nn.Linear(6, 4) # 6维到4维
self.linear3 = torch.nn.Linear(4, 1) # 4维到1维
self.sigmoid = torch.nn.Sigmoid() # sigmoid无权重需要更新,故2层神经网络只需一个sigmoid层
self.relu = torch.nn.ReLU()
# 构建一个计算图
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.relu(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
# 实例化模型
model = Model()
criterion = torch.nn.BCELoss(reduction="mean")
optimizer = torch.optim.SGD(model.parameters(), lr=0.2)
costs_list = []
epoch_list = []
# 开始训练
for epoch in range(2500):
# 正向传播
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print("epach=", epoch, "loss=", loss.item())
epoch_list.append(epoch)
costs_list.append(loss.item())
# 反向传播
optimizer.zero_grad()
loss.backward()
# 更新参数
optimizer.step()
plt.plot(epoch_list, costs_list)
plt.xlabel("epoch")
plt.ylabel("cost")
plt.show()
结果:
epach= 0 loss= 0.8240426182746887
epach= 1 loss= 0.8114709854125977
epach= 2 loss= 0.7999751567840576
epach= 3 loss= 0.7894270420074463
...
epach= 2497 loss= 0.4559384882450104
epach= 2498 loss= 0.4559420347213745
epach= 2499 loss= 0.4559381604194641
这个损失下降的似乎并不是很理想,当三层均使用sigmoid时,结果更为不理想,是不是训练数据集太过小了,一时间想不出来为什么。