006_wz_ledr_pytorch深度学习实战_第七讲——处理多维特征的输入

一、目的

处理一个数据的多维特征输入

二、编程

当一个数据具有多维特征时,我们要将其向量化才得以一次处理多个特征
在这里插入图片描述
1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。
2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。
3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。我们在前两层使用relu激活,最后一层使用sigmoid激活。
在这里插入图片描述
4、本算法中torch.nn.Sigmoid() ,将其看作是网络的一层,而不是简单的函数使用
下面是具体代码实现:

import numpy as np
import torch
import matplotlib.pyplot as plt

# 加载训练集
xy = np.loadtxt("diabetes.csv.gz", delimiter=",", dtype=np.float32)
# 取除了最后一列的所有列
x_data = torch.from_numpy(xy[:, :-1])
# 取最后一列
y_data = torch.from_numpy((xy[:, [-1]]))

# 构造模型
class Model(torch.nn.Module):
    # 构造函数
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)  # 8维到6维
        self.linear2 = torch.nn.Linear(6, 4)  # 6维到4维
        self.linear3 = torch.nn.Linear(4, 1)  # 4维到1维
        self.sigmoid = torch.nn.Sigmoid()  # sigmoid无权重需要更新,故2层神经网络只需一个sigmoid层
        self.relu = torch.nn.ReLU()

    # 构建一个计算图
    def forward(self, x):
        x = self.relu(self.linear1(x))
        x = self.relu(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        return x


# 实例化模型
model = Model()

criterion = torch.nn.BCELoss(reduction="mean")
optimizer = torch.optim.SGD(model.parameters(), lr=0.2)


costs_list = []
epoch_list = []
# 开始训练
for epoch in range(2500):
    # 正向传播
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print("epach=", epoch, "loss=", loss.item())
    epoch_list.append(epoch)
    costs_list.append(loss.item())
    # 反向传播
    optimizer.zero_grad()
    loss.backward()
    # 更新参数
    optimizer.step()

plt.plot(epoch_list, costs_list)
plt.xlabel("epoch")
plt.ylabel("cost")
plt.show()

结果:

epach= 0 loss= 0.8240426182746887
epach= 1 loss= 0.8114709854125977
epach= 2 loss= 0.7999751567840576
epach= 3 loss= 0.7894270420074463
...
epach= 2497 loss= 0.4559384882450104
epach= 2498 loss= 0.4559420347213745
epach= 2499 loss= 0.4559381604194641

在这里插入图片描述
这个损失下降的似乎并不是很理想,当三层均使用sigmoid时,结果更为不理想,是不是训练数据集太过小了,一时间想不出来为什么。

三、参考

python深度学习实践
PyTorch 深度学习实践 第7讲
PyTorch学习(六)–处理多维特征的输入

Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ //__HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); //__HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LEDR_OUT_PD3_GPIO_Port, LEDR_OUT_PD3_Pin, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ //HAL_GPIO_WritePin(GPIOB, RS485_RE_OUT_PB8_Pin|RS485_SE_OUT_PB9_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LEDR_OUT_PD3_Pin */ GPIO_InitStruct.Pin = LEDR_OUT_PD3_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(LEDR_OUT_PD3_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : RS485_RE_OUT_PB8_Pin RS485_SE_OUT_PB9_Pin */ GPIO_InitStruct.Pin = RS485_RE_OUT_PB8_Pin|RS485_SE_OUT_PB9_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @param file: The file name as string. * @param line: The line in file as a number. * @retval None */ void _Error_Handler(char *file, int line) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while(1) { } /* USER CODE END Error_Handler_Debug */
07-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值