011_wz_ledr_pytorch深度学习实战_第十二讲——循环神经网络(RNN)基础篇

一、目的

搭建简单的RNN,实现seq2seq的转换

二、编程

先大概了解一下RNN
在这里插入图片描述
RNN 其实也是一个普通的神经网络,只不过多了一个 hidden_state 来保存历史信息。跟一般网络不同的是,RNN 网络的输入数据的维度通常是 [ b a t c h _ s i z e ∗ s e q l e n ∗ i n p u t _ s i z e ] [batch\_size*seqlen*input\_size] [batch_sizeseqleninput_size],它多了一个序列长度 s e q l e n seqlen seqlen。在前向过程中,我们会把样本 t t t个时间序列 x 1 , x 2 , . . . , x t x_1,x_2,...,x_t x1,x2,...,xt的信息不断输入同一个网络 ,因为是重复地使用同一个网络,所以称为循环神经网络。
在这里插入图片描述
关于 RNN,你只需要记住一个公式: h t = t a n h ( w i h x t + b i h + w h h h t − 1 + b h h ) h_t=tanh(w_{ih}x_t+b_{ih}+w_{hh}h_{t-1}+b_{hh}) ht=tanh(wihxt+bih+whhht1+bhh)这也是 pytorch 官方文档中给出的最原始的 RNN 公式,其中 w w w表示 weight, b b b表示 bias, x t x_t xt是输入, h t h_t ht是隐藏状态。回忆一下,普通的神经网络只有 w i h x t + b i h w_{ih}x_t+b_{ih} wihxt+bih这一部分,而 RNN 无非就是多加了一个隐藏状态的信息 w h h h t − 1 + b h h w_{hh}h_{t-1}+b_{hh} whhht1+bhh而已。

普通网络都是一次前向传播就得到结果,而 RNN 因为多了 sequence 这个维度,所以需要跑 n 次前向。

编程实现分为两种一种是使用RNNCell,另一种是直接使用RNN
RNNCell:

import torch

# 输入样本特征数
input_size = 4
# 隐藏层样本特征数(分类数)
hidden_size = 4
# batch大小
batch_size = 1

idx2char = ['e', 'h', 'l', 'o']
# hello
x_data = [1, 0, 2, 2, 3]
# ohlol
y_data = [3, 1, 2, 3, 2]

# 将x_data转换为one_hot表示
'''
torch.eye()
参数:
n (int ) – 行数
m (int, optional) – 列数.如果为None,则默认为n
out (Tensor, optinal) - Output tensor
'''
x_one_hot = torch.eye(n=4)[x_data, :]
y_one_hot = torch.eye(n=4)[y_data, :]

# x_data转换维度为(seqlen, batch_size, input_size),此维度为RNN的输入
inputs = x_one_hot.view(-1, batch_size, input_size)
# y_data转换维度为(seqlen,1)
labels = torch.LongTensor(y_data).view(-1, 1)

# 构建神经网络模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.input_size = input_size
        self.batch_size = batch_size
        self.hidden_size = hidden_size
        # 对于RNNCell输入为(batch_size, input_size),隐层为(batch_size, hidden_size)
        self.rnncell = torch.nn.RNNCell(input_size=self.input_size, hidden_size=self.hidden_size)

    def forward(self, input, hidden):
        # h_t=Cell(x_t, h_t-1)
        hidden = self.rnncell(input, hidden)
        return hidden

    # 初始化隐层h_0
    def init_hidden(self):
        return torch.zeros(self.batch_size, self.hidden_size)


model = Model()

# 构建损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# 训练
for epoch in range(60):
    loss = 0
    optimizer.zero_grad()
    # h_0
    hidden = model.init_hidden()
    print('Predicted string:', end='')
    for input, label in zip(inputs, labels):
        hidden = model(input, hidden)
        loss += criterion(hidden, label)
        _, idx = hidden.max(dim=1)
        print(idx2char[idx.item()], end='')
    loss.backward()
    optimizer.step()
    print(', epoch[%d/60] loss=%.4f' % (epoch+1, loss.item()))

预测结果:

Predicted string:llllo, epoch[1/60] loss=6.3004
Predicted string:lllll, epoch[2/60] loss=6.1191

...
Predicted string:ohlol, epoch[59/60] loss=3.0500
Predicted string:ohlol, epoch[60/60] loss=3.0195

RNN:

import torch

# 输入样本特征数
input_size = 4
# 隐藏层样本特征数(分类数)
hidden_size = 4
# batch大小
batch_size = 1
# RNN的层数
num_layers = 1

idx2char = ['e', 'h', 'l', 'o']
# hello
x_data = [1, 0, 2, 2, 3]
# ohlol
y_data = [3, 1, 2, 3, 2]

# 将x_data转换为one_hot表示
'''
torch.eye()
参数:
n (int ) – 行数
m (int, optional) – 列数.如果为None,则默认为n
out (Tensor, optinal) - Output tensor
'''
x_one_hot = torch.eye(n=4)[x_data, :]
y_one_hot = torch.eye(n=4)[y_data, :]

# x_data转换维度为(seqlen, batch_size, input_size),此维度为RNN的输入
inputs = x_one_hot.view(-1, batch_size, input_size)
# y_data转换维度为(seqlen*batch_size,1)
labels = torch.LongTensor(y_data)

# 构建神经网络模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.input_size = input_size
        self.batch_size = batch_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        # 对于RNN输入为(seqlen, batch_size, input_size)
        self.rnn = torch.nn.RNN(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=self.num_layers)

    def forward(self, input):
        hidden = torch.zeros(self.num_layers, self.batch_size, self.hidden_size)
        # h_t=Cell(x_t, h_t-1)
        out, _ = self.rnn(input, hidden)
        out = out.view(-1, self.hidden_size)
        return out


model = Model()

# 构建损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)

# 训练
for epoch in range(60):
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()

    _, idx = outputs.max(dim=1)
    idx = idx.data.numpy()
    print("Predicted:", ''.join([idx2char[x]for x in idx]), end='')
    print(",epoch[%d/60] loss=%.4f" % (epoch+1, loss.item()))

预测结果:

Predicted: hhhhh,epoch[1/60] loss=1.4128
Predicted: oholl,epoch[2/60] loss=1.1269
...
Predicted: ohlol,epoch[59/60] loss=0.4408
Predicted: ohlol,epoch[60/60] loss=0.4407

三、参考

pytorch深度学习实践
Pytorch实现RNN

注:【PyTorch】深度学习实践 b站 第12讲RNN基础篇非常不错的一篇文章

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值