类欧几里得

∑ i = 0 n ⌊ a i + b c ⌋ \sum_{i=0}^{n}\left \lfloor \frac{ai+b}{c} \right \rfloor i=0ncai+b

如果a>=c
∑ i = 0 n ⌊ a i + b c ⌋ = ⌊ a c ⌋ n ( n + 1 ) 2 + ∑ i = 0 n ⌊ ( a % c ) i + b c ⌋ \sum_{i=0}^{n}\left \lfloor \frac{ai+b}{c} \right \rfloor=\left \lfloor \frac{a}{c} \right \rfloor\frac{n(n+1)}{2}+\sum_{i=0}^{n}\left \lfloor \frac{(a\%c)i+b}{c} \right \rfloor i=0ncai+b=ca2n(n+1)+i=0nc(a%c)i+b
如果b>=c
∑ i = 0 n ⌊ a i + b c ⌋ = ⌊ b c ⌋ ( n + 1 ) + ∑ i = 0 n ⌊ a i + b % c c ⌋ \sum_{i=0}^{n}\left \lfloor \frac{ai+b}{c} \right \rfloor=\left \lfloor \frac{b}{c} \right \rfloor(n+1)+\sum_{i=0}^{n}\left \lfloor \frac{ai+b\%c}{c} \right \rfloor i=0ncai+b=cb(n+1)+i=0ncai+b%c
然后现在我们有a<c,b<c
∑ i = 0 n ⌊ a i + b c ⌋ \sum_{i=0}^{n}\left \lfloor \frac{ai+b}{c} \right \rfloor i=0ncai+b
= ∑ i = 0 n ∑ j = 0 ⌊ a i + b c ⌋ [ j < ⌊ a i + b c ⌋ ] =\sum_{i=0}^{n}\sum_{j=0}^{\left \lfloor \frac{ai+b}{c} \right \rfloor}[j<\left \lfloor \frac{ai+b}{c} \right \rfloor] =i=0nj=0cai+b[j<cai+b]
= ∑ i = 0 n ∑ j = 0 ⌊ a n + b c ⌋ [ j < ⌊ a i + b c ⌋ ] =\sum_{i=0}^{n}\sum_{j=0}^{\left \lfloor \frac{an+b}{c} \right \rfloor}[j<\left \lfloor \frac{ai+b}{c} \right \rfloor] =i=0nj=0can+b[j<cai+b]
我们考虑 [ j < ⌊ a i + b c ⌋ ] = [ ( j + 1 ) c < = a i + b ] = [ i > = j c + c − b a ] = [ i > ⌊ j c + c − b − 1 a ⌋ ] = 1 − [ i < = ⌊ j c + c − b − 1 a ⌋ ] [j<\left \lfloor \frac{ai+b}{c} \right \rfloor]=[(j+1)c<=ai+b]=[i>=\frac{jc+c-b}{a}]=[i>\left \lfloor \frac{jc+c-b-1}{a} \right \rfloor]=1-[i<=\left \lfloor \frac{jc+c-b-1}{a} \right \rfloor] [j<cai+b]=[(j+1)c<=ai+b]=[i>=ajc+cb]=[i>ajc+cb1]=1[i<=ajc+cb1]
所以上述式子可以表示为
= n ⌊ a n + b c ⌋ − ∑ i = 0 ⌊ a n + b c ⌋ − 1 ⌊ i c + c − b − 1 a ⌋ =n\left \lfloor \frac{an+b}{c} \right \rfloor-\sum_{i=0}^{\left \lfloor \frac{an+b}{c} \right \rfloor-1}\left \lfloor \frac{ic+c-b-1}{a} \right \rfloor =ncan+bi=0can+b1aic+cb1
我们设 f ( a , b , c , n ) = ∑ i = 0 n ⌊ a i + b c ⌋ f(a,b,c,n)=\sum_{i=0}^{n}\left \lfloor \frac{ai+b}{c} \right \rfloor f(a,b,c,n)=i=0ncai+b
那么我们有 f ( a , b , c , n ) = f ( a % c , b % c , c , n ) + ⌊ a c ⌋ n ( n + 1 ) 2 + ⌊ b c ⌋ ( n + 1 ) f(a,b,c,n)=f(a\%c,b\%c,c,n)+\left \lfloor \frac{a}{c} \right \rfloor\frac{n(n+1)}{2}+\left \lfloor \frac{b}{c} \right \rfloor(n+1) f(a,b,c,n)=f(a%c,b%c,c,n)+ca2n(n+1)+cb(n+1)
f ( a , b , c , n ) = n ⌊ a n + b c ⌋ − f ( c , c − b − 1 , a , ⌊ a n + b c ⌋ − 1 ) f(a,b,c,n)=n\left \lfloor \frac{an+b}{c} \right \rfloor-f(c,c-b-1,a,\left \lfloor \frac{an+b}{c} \right \rfloor-1) f(a,b,c,n)=ncan+bf(c,cb1,a,can+b1)
然后我们递归处理,时间复杂度一个log,时间复杂度分析可以参照欧几里得辗转相除

ll get_la(ll a,ll b,ll c,ll n){
	if (a==0) return (n+1)*(b/c);
	if (a>=c||b>=c) return (a/c)*(1+n)*n/2+(b/c)*(n+1)+get_la(a%c,b%c,c,n);	
	return (a*n+b)/c*n-get_la(c,c-b-1,a,(a*n+b)/c-1);
}

剩余的先咕着

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值