汉诺塔 (http://baike.baidu.com/view/191666.htm) 的移动也可以看做是递归函数。
我们对柱子编号为a, b, c,将所有圆盘从a移到c可以描述为:
如果a只有一个圆盘,可以直接移动到c;
如果a有N个圆盘,可以看成a有1个圆盘(底盘) + (N-1)个圆盘,首先需要把 (N-1) 个圆盘移动到 b,然后,将 a的最后一个圆盘移动到c,再将b的(N-1)个圆盘移动到c。
请编写一个函数,给定输入 n, a, b, c,打印出移动的步骤:
move(n, a, b, c)
例如,输入 move(2, 'A', 'B', 'C'),打印出:
A --> B
A --> C
B --> C
下面为函数(Python编写)
函数 move(n, a, b, c) 的定义是将 n 个圆盘从 a 借助 b 移动到 c。
def move(n, a, b, c): if n ==1: print a, '-->', c return move(n-1, a, c, b) print a, '-->', c move(n-1, b, a, c) move(4, 'A', 'B', 'C')
运行结果如下:
A --> B A --> C B --> C A --> B C --> A C --> B A --> B A --> C B --> C B --> A C --> A B --> C A --> B A --> C B --> C
解释原理:
def move(n, a, b, c):
if n ==1: #如果n==1
print a, '-->', c
return #如果n不等于1
move(n-1, a, c, b) #将N-1个塔通过c移动到b
print a, '-->', c #这里是将最下面最大的一个塔移动到了
move(n-1, b, a, c) #将N-1个塔通过a移动到c
move(4, 'A', 'B', 'C')
做个假设比如n=3(即a中有123三个圆盘n>1)时,那么就把12先看作一个整体(即N-1),先把1,2通过c移到b中即move(n-1, a, c, b),这样我们就可以把最大的数字3从a移到c了即输出print a, '-->', c接着就是12已经在b中了,3在c中而a并没有圆盘,这时候我们输出move(n-1, b, a, c)把a和b位置调换就是正确的了,即把b中的12通过a移到c中(3已经在c中我们就不鸟它了)。就这样一直递归到n==1时,我们再输出print a, '-->', c,然后结束。
重点在于将(N-1)看作一个整体来比较好理解,看作一个整体就相当于只有两块圆盘来移动