Python写的汉诺塔问题

本文介绍了一个经典的递归问题——汉诺塔,并提供了一种简洁的Python实现方法。通过递归函数move(n,a,b,c),实现了将任意数量的盘子从起始柱子a移动到目标柱子c的过程,同时详细解释了递归调用的逻辑。
摘要由CSDN通过智能技术生成

汉诺塔 (http://baike.baidu.com/view/191666.htm) 的移动也可以看做是递归函数。

我们对柱子编号为a, b, c,将所有圆盘从a移到c可以描述为:

如果a只有一个圆盘,可以直接移动到c;

如果a有N个圆盘,可以看成a有1个圆盘(底盘) + (N-1)个圆盘,首先需要把 (N-1) 个圆盘移动到 b,然后,将 a的最后一个圆盘移动到c,再将b的(N-1)个圆盘移动到c。

请编写一个函数,给定输入 n, a, b, c,打印出移动的步骤:

move(n, a, b, c)

例如,输入 move(2, 'A', 'B', 'C'),打印出:

A --> B
A --> C
B --> C


一开始我没有理解给的函数定义里的a,b,c是什么意思,后来我理解了,a代表的是起始点,c代表的是终点,而b代表的就是中转点,那么我们再仔细的阅读一下题目就能很容易的写出程序了。


def move(n, a, b, c):
    if n == 1:
        print a+'-->'+c
    else:
        move(n-1,a,c,b)
        print a+'-->'+c
        move(n-1,b,a,c)     

move(4, 'A', 'B', 'C')


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值