自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 第P3周:Pytorch实现天气识别

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用。对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。,否则的话,有输入数据,即使不训练,它也会改变权值。

2025-02-06 02:28:08 1000

原创 深度学习基本环境配置(自用版)

注意:配置环境时无需提前安装python因为anaconda是一个python的发行版,包括了python和很多常见的软件库,和一个包管理器conda2.点击右上角“FreeDownload”字样后登陆自己邮箱进入下载页面3.点击安装包,勾选“Allusers”、“AddAnacondatothesystemPATHenvironmentvariable”、“Register…”

2025-01-18 23:47:41 293

原创 第P2周:CIFAR10彩色图片识别

在本篇博客中,由于在 ToTensor() 过程中,将PIL Image或NumPy(H x W x C)的图片转换成了PyTorch的Tensor格式(C x H x W)由于我们在数据可视化的过程中使用了Numpy库,与其相对应的图片格式是(H x W x C),所以我们在可视化的过程中要将图片格式还原。在P1周,我们用到了 squeeze() 函数,该函数的功能是从从矩阵shape中,去掉维度为1的。transpose() 函数的参数是一个元组,定义了新轴的顺序。特征提取网络:卷积块1、2、3。

2024-10-12 12:20:59 522

原创 第P1周:Pytorch实现mnist手写数字识别

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。(下载后需解压)。我们一般会采用这行代码直接调用,这样就比较简单MNIST手写数字数据集中包含了70000张图片,其中60000张为训练数据,10000为测试数据,70000张图片均是28*28如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把训练集看成是一个的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。

2024-09-30 21:09:30 1837 1

原创 第L4周:机器学习|K-邻近算法模型

背景: 海伦一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的人选,但她没有从中找到喜欢的人。①不喜欢的人;②魅力一般的人;③极具魅力的人。①每年获得的飞行常客里程数②玩视频游戏所耗时间百分比③每周消费的冰淇淋公升数她希望根据现有的数据来判断一个陌生男人会被她归到哪一类。

2024-09-20 22:19:47 1709 1

原创 第L3周:ML | 逻辑回归 LogisticRegression

逻辑回归(Logistic Regression)是一种广泛应用的机器学习算法,特别适用于分类问题。尽管名字中带有“回归”,但它主要用于解决二分类或多分类问题,而不是回归问题。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。 核心思想是将输入特征通过一个线性函数映射到输出,然后使用逻辑函数(Sigmoid函数或Softmax函数)将线性函数的输出转换为概率,从而实现分类。 用于将数据分为两个类别,例如判断邮件是否为垃圾邮件、病人是否患有某

2024-09-19 22:26:15 1802

原创 第L2周:ML|线性回归模型

如果你只使用一个特征来预测另一个特征,那么这种情况下模型是可以工作的,但通常这不是机器学习中的标准做法,因为模型将无法从多个特征中学习。这里我们采用“学习时长-成绩”数据集,采用LinearRegression简单线形回归模型,通过学习时长去预测学生成绩。(3) fit 的作用:找到最佳的线性关系,即最佳拟合线,来描述。(2) 这段代码初始化了一个线性回归模型,并使用训练数据集。对象可以用来对新的特征数据进行预测,以估计目标变量的值。

2024-09-19 00:23:46 773

原创 第L1周:ML | 数据预处理

如果数据集中的某些特征或类别的样本数量较少,随机分割可能会导致训练集或测试集中这些特征或类别的表示不均衡。的正太分布,消除不同特征量纲的影响,尤其是像支持向量机 (SVM)、逻辑回归、神经网络等基于梯度的模型。:由于训练集和测试集的样本不同,模型在测试集上的性能可能会有所波动。的形式,这样可以用于机器学习模型的输入,因为大多数模型都需要NumPy数组格式的数据。方法会扫描指定的列,计算非缺失值的均值,并存储这些均值以便后续使用。参数指定了填充缺失值的方法,即用每列的均值来填充该列的缺失值。

2024-09-18 02:11:16 795 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除