第L3周:ML | 逻辑回归 LogisticRegression

        逻辑回归(Logistic Regression)是一种广泛应用的机器学习算法,特别适用于分类问题。尽管名字中带有“回归”,但它主要用于解决二分类或多分类问题,而不是回归问题。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。

一、 基本概念

        核心思想是将输入特征通过一个线性函数映射到输出,然后使用逻辑函数(Sigmoid函数或Softmax函数)将线性函数的输出转换为概率,从而实现分类。

1. 二分类逻辑回归

        用于将数据分为两个类别,例如判断邮件是否为垃圾邮件、病人是否患有某种疾病、图片中是否包含某种物体等。

        逻辑回归的输出是一个0到1之间的概率值,表示某个样本属于某一类的概率。模型的基本形式如下: 

$y = \sigma(z) = \sigma(w^T x + b)$

其中:

  • y是输出概率,表示输入样本属于正类的概率
  • $\sigma(z)$ 是逻辑函数(Sigmoid函数),其定义为:$\sigma(z) = \frac{1}{1 + e^{-z}}$
  • w是模型的权重向量, x是输入特征向量, b是偏置。

Sigmoid函数将线性模型的输出值映射到[0, 1]之间,使其可以解释为概率。

决策边界在二分类问题中,逻辑回归通过设置一个阈值(通常为0.5)来创建决策边界。如果预测的概率大于或等于0.5,则预测类别为正类(1);如果小于0.5,则预测为负类(0)。

2. 多分类逻辑回归

        在多分类问题中,使用 Softmax 函数来处理多类输出。Softmax 函数可以将一个向量的每个元素映射为概率值,并且这些概率值之和为1。Softmax函数的定义如下:

 $\text{Softmax}(z_j) = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$

        其中,$z_j$ 是类别 j  的得分, K 是类别的总数。

3. 损失函数

        逻辑回归使用对数损失函数(Log Loss)来优化模型。

        二分类的损失函数的形式为:

$\text{Loss}(y, \hat{y}) = -\left[ y \cdot \log(\hat{y}) + (1 - y) \cdot \log(1 - \hat{y}) \right]$

        其中,y是真实标签(0或1),$\hat{y}$是模型预测的概率。

        多分类问题中,使用交叉熵损失(Cross-Entropy Loss)

$\text{Loss}(y, \hat{y}) = -\sum_{i=1}^K y_i \cdot \log(\hat{y}_i)$

        其中,K是类别总数,$y_i$是第i类的真实标签,$\hat{y}_i$是模型预测的第i类的概率。


二、代码实现

1. 导入库
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import datasets
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

前四行代码在第L1/L2周均出现过,下面解释一下最后两行代码:

(1)倒数第二行代码从scikit-learn库中导入了datasets模块。datasets模块提供了一些用于测试和演示机器学习算法的标准数据集。这些数据集包括鸢尾花(Iris)、葡萄酒(Wine)、手写数字(Digits)等,它们已经被预处理成适合直接用于训练模型的格式。

(2)最后一行代码从scikit-learn的metrics模块中导入了三个用于评估分类模型性能的函数:

  • accuracy_score:这个函数用于计算分类模型的准确率,即正确预测的样本数占总样本数的比例。它是评估分类模型性能的常用指标之一。

  • classification_report这个函数提供了一个更全面的模型性能报告,包括每个类别的精确度(precision)、召回率(recall)、F1分数(F1-score)等。这些指标对于理解模型在不同类别上的表现特别有用。

  • confusion_matrix这个函数生成一个混淆矩阵,它是一个表格,用于显示模型预测的结果与实际标签之间的关系。混淆矩阵可以帮助你识别模型在哪些类别上预测准确,哪些类别上存在问题。   详细内容补充见最后

2. 导入数据
# 2. 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data  # 特征矩阵
y = iris.target  # 目标变量
3. 特征标准化+数据集划分
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
x_train, X_test, y_train, y_test = train_test_split(X_scaled, y, 
                                                test_size=0.2, random_state=42)
4. 构建逻辑回归模型
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(max_iter=200)  
# max_iter 是迭代次数,默认为100,这里设为200以保证收敛
model.fit(X_train, y_train)
5. 预测结果
y_pred = model.predict(X_test)
6. 评估预测结果
accuracy = accuracy_score(y_test, y_pred)
'''
f前缀表示这是一个格式化字符串,允许你在字符串中直接嵌入表达式
{accuracy:.2f}是字符串中的一个表达式占位符,其中accuracy是一个变量,
:.2f指定了格式化的规则
'''
print(f"模型的准确率: {accuracy:.2f}")

# 打印分类报告
print("分类报告:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

# 打印混淆矩阵
print("混淆矩阵:")
print(confusion_matrix(y_test, y_pred))


三、内容补充

1. classification_report

        classification_report 是 scikit-learn 库中的一个函数,用于显示分类模型的性能。这个报告提供了每个类别的主要分类指标,包括:

(1)精确度(Precision)

         精确度是指模型预测为正类的样本中,实际为正类的比例。它衡量的是预测结果的准确性。计算公式为:  

\text{Precision} = \frac{TP}{TP + FP}  

        其中,TP 是真正类,FP 是假正类。

(2)召回率(Recall)

        召回率是指模型正确预测为正类的样本占所有实际正类样本的比例。它衡量的是模型捕捉正类的能力。计算公式为:

  \text{Recall} = \frac{TP}{TP + FN}

        其中,FN 是假负类。

(3)F1分数(F1 Score)

        F1分数是精确度和召回率的调和平均数,它在两者之间取得平衡。当精确度和召回率都很高时,F1分数也会很高。

        计算公式为:

F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}

(4)支持度(Support)

        支持度是指每个类别在数据集中的样本数量。

(5)target_names=iris.target_names

        调用 classification_report 时,如果没有提供 target_names 参数,那么报告将使用数据集中的原始标签(通常是数字或字符串)来表示每个类别。如果你提供了 target_names 参数,那么报告将使用这些名称来代替原始标签。

        例如,对于鸢尾花(Iris)数据集,类别标签可能是数字 0、1 和 2。这些数字并不直观地表示它们对应的花的种类。鸢尾花数据集通常包含以下三种花:0: Setosa;1: Versicolour;2: Virginica。


2. Confusion Matrix 混淆矩阵

        混淆矩阵(Confusion Matrix)是一个用于评估分类模型性能的工具,它显示了实际类别与模型预测类别之间的关系。混淆矩阵通常用于二分类问题,但也可以扩展到多分类问题。以下是混淆矩阵的基本内容和结构:

对于二分类问题:

在二分类问题中,混淆矩阵是一个 2x2 的矩阵,包含以下四个元素:

  • 真正类(True Positive, TP):模型正确预测为正类的样本数。
  • 假正类(False Positive, FP):模型错误预测为正类,实际上是负类的样本数。
  • 真负类(True Negative, TN):模型正确预测为负类的样本数。
  • 假负类(False Negative, FN):模型错误预测为负类,实际上是正类的样本数。

对于多分类问题:

在多分类问题中,混淆矩阵是一个nxn 的矩阵,其中n是类别的数量。

每个元素(i, j)表示实际类别为i的样本被预测为类别j的次数


3. LogisticRegression() 函数详解

   sklearn.linear_model.LogisticRegressionscikit-learn 库中用于实现逻辑回归(Logistic Regression)的函数。这个函数可以处理二元分类、多分类问题,并且提供了多种选项来调整模型的行为。下面是对这个函数的详细介绍:

3.1 函数原型
LogisticRegression(
    penalty='l2',                 # 正则化类型,'l1', 'l2', 'elasticnet', 'none'
    dual=False,                   # 双对偶或原始方法
    tol=0.0001,                   # 优化过程的容差
    C=1.0,                        # 正则化强度的倒数,较小的值表示较强的正则化
    fit_intercept=True,           # 是否拟合截距项
    intercept_scaling=1,          # 拦截(截距)的缩放系数
    class_weight=None,            # 给定类别的权重,'balanced' 或 dict
    random_state=None,            # 随机数种子
    solver='lbfgs',               # 优化算法,{'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}
    max_iter=100,                 # 最大迭代次数
    multi_class='auto',           # 处理多类分类问题的方法,{'auto', 'ovr', 'multinomial'}
    verbose=0,                    # 是否在训练过程中输出日志信息
    warm_start=False,             # 是否使用上次调用的解作为初始解
    n_jobs=None,                  # 并行处理的作业数量
    l1_ratio=None                 # 混合正则化的弹性网络的l1比例
)
3.2 常用参数解释
  • penalty:指定正则化类型。'l2' 为默认值,'l1' 适用于稀疏特征,'elasticnet' 是 L1 和 L2 的组合,'none' 不使用正则化。
  • dual:对数对偶或原始方法,默认值为 False,适用于样本数量大于特征数量的情况。
  • tol:停止优化的标准。
  • C:正则化强度的倒数,值越小正则化越强。
  • fit_intercept:是否拟合截距项。
  • intercept_scaling:仅在 solver='liblinear' 时使用。
  • class_weight:用于处理类别不平衡问题,可以设置为 'balanced' 或者自定义的权重字典。
  • random_state:随机数种子,保证结果的可重复性。
  • solver:选择优化算法,不同算法在不同数据集上的表现不同。
  • max_iter:优化算法的最大迭代次数。
  • multi_class:处理多类分类问题的方法,'auto' 会根据数据集自动选择。
  • verbose:控制训练过程中的详细输出。
  • warm_start:是否使用上次调用的结果作为初始值。
  • n_jobs:并行运算的作业数量,-1 表示使用所有CPU。
  • l1_ratio:仅在使用 'elasticnet' 正则化时使用,控制 L1 和 L2 的比例。
3.3 常用方法
  • fit(X, y):训练模型。
  • predict(X):使用训练好的模型进行预测。
  • predict_proba(X):返回每个样本属于各个类别的概率。
  • decision_function(X):返回每个样本的置信度分数。
  • score(X, y):返回给定测试数据和标签的平均准确度。
  • get_params():获取模型参数。
  • set_params():设置模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值