路飞他们伟大航路行程的起点是罗格镇,终点是拉夫德鲁(那里藏匿着“唯一的大秘宝”——ONE PIECE)。而航程中间,则是各式各样的岛屿。
因为伟大航路上的气候十分异常,所以来往任意两个岛屿之间的时间差别很大,从A岛到B岛可能需要1天,而从B岛到A岛则可能需要1年。当然,任意两个岛之间的航行时间虽然差别很大,但都是已知的。
现在假设路飞一行从罗格镇(起点)出发,遍历伟大航路中间所有的岛屿(但是已经经过的岛屿不能再次经过),最后到达拉夫德鲁(终点)。假设他们在岛上不作任何的停留,请问,他们最少需要花费多少时间才能到达终点?
输入
输入数据包含多行。
第一行包含一个整数N(2 < N ≤ 16),代表伟大航路上一共有N个岛屿(包含起点的罗格镇和终点的拉夫德鲁)。其中,起点的编号为1,终点的编号为N。
之后的N行每一行包含N个整数,其中,第i(1 ≤ i ≤ N)行的第j(1 ≤ j ≤ N)个整数代表从第i个岛屿出发到第j个岛屿需要的时间t(0 < t < 10000)。第i行第i个整数为0。
输出
输出为一个整数,代表路飞一行从起点遍历所有中间岛屿(不重复)之后到达终点所需要的最少的时间。
样例输入
样例输入1:
4
0 10 20 999
5 0 90 30
99 50 0 10
999 1 2 0
样例输入2:
5
0 18 13 98 8
89 0 45 78 43
22 38 0 96 12
68 19 29 0 52
95 83 21 24 0
样例输出
样例输出1:
100
样例输出2:
137
提示提示:
对于样例输入1:路飞选择从起点岛屿1出发,依次经过岛屿3,岛屿2,最后到达终点岛屿4。花费时间为20+50+30=100。
对于样例输入2:可能的路径及总时间为:
1,2,3,4,5: 18+45+96+52=211
1,2,4,3,5: 18+78+29+12=137
1,3,2,4,5: 13+38+78+52=181
1,3,4,2,5: 13+96+19+43=171
1,4,2,3,5: 98+19+45+12=174
1,4,3,2,5: 98+29+38+43=208
所以最短的时间花费为137
单纯的枚举在N=16时需要14!次运算,一定会超时。
1.深搜加剪枝
#include<iostream>
#include<cstdio>
#include<queue>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=16;
int G[maxn][maxn],best[maxn][(1<<maxn)];
int minL=(1<<30),N;
void dfs(int u,int cur,int k)
{
if(minL<cur||(u==N-1&&k<((1<<N)-1))) return;
if(best[u][k]<=cur) return;
else best[u][k]=cur;
if(u==N-1&&k==((1<<N)-1)) {
minL=min(minL,cur);
return;
}
for(int v=0;v<N;v++)
if(G[u][v]&&(k&(1<<v))==0) dfs(v,cur+G[u][v],k+(1<<v));
}
int main()
{
cin>>N;
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
cin>>G[i][j];
memset(best,0x7f,sizeof(best));
dfs(0,0,1);
cout<<minL;
return 0;
}
2.状态转移方程:
dp[state][land] :在状态 state ,所在岛屿为 land 的情况下已经花去的时间
state 代表目前的状态。以二进制数表示,如第3位二进制位为1就表示第3座岛屿(不含起点岛屿)已被访问过。
land 表示当前所在的岛屿。所以 solve(int state,int land) 的最终状态(需要最终输出的值)永远都是 land=n-1 (在终点岛屿的时候)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int G[20][20];
int dp[(1<<16)+5][20];
int main() {
int n;
while (cin >> n) {
memset(dp,0x7f,sizeof(dp));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> G[i][j];
}
}
dp[1][1] = 0;
int ans = (1<<n)-1;
for (int k = 1; k <= ans; k++) {
for (int i = 1,_i = 1; i <= n; i++,_i<<=1) {
if (k&_i)
for (int j = 1, _j = 1; j <= n; j++,_j<<=1) {
if (i!=j && k&_j)
dp[k][i] = min(dp[k][i],dp[k^_i][j]+G[j][i]);
}
}
}
cout << dp[ans][n] << endl;
}
return 0;
}