总时间限制: 1000ms 内存限制: 65536kB
描述
“我是要成为海贼王的男人!”,路飞一边喊着这样的口号,一边和他的伙伴们一起踏上了伟大航路的艰险历程。
路飞他们伟大航路行程的起点是罗格镇,终点是拉夫德鲁(那里藏匿着“唯一的大秘宝”——ONE PIECE)。而航程中间,则是各式各样的岛屿。
因为伟大航路上的气候十分异常,所以来往任意两个岛屿之间的时间差别很大,从A岛到B岛可能需要1天,而从B岛到A岛则可能需要1年。当然,任意两个岛之间的航行时间虽然差别很大,但都是已知的。
现在假设路飞一行从罗格镇(起点)出发,遍历伟大航路中间所有的岛屿(但是已经经过的岛屿不能再次经过),最后到达拉夫德鲁(终点)。假设他们在岛上不作任何的停留,请问,他们最少需要花费多少时间才能到达终点?
输入
输入数据包含多行。
第一行包含一个整数N(2 < N ≤ 16),代表伟大航路上一共有N个岛屿(包含起点的罗格镇和终点的拉夫德鲁)。其中,起点的编号为1,终点的编号为N。
之后的N行每一行包含N个整数,其中,第i(1 ≤ i ≤ N)行的第j(1 ≤ j ≤ N)个整数代表从第i个岛屿出发到第j个岛屿需要的时间t(0 < t < 10000)。第i行第i个整数为0。
输出
输出为一个整数,代表路飞一行从起点遍历所有中间岛屿(不重复)之后到达终点所需要的最少的时间。
样例输入
样例输入1:
4
0 10 20 999
5 0 90 30
99 50 0 10
999 1 2 0
样例输入2:
5
0 18 13 98 8
89 0 45 78 43
22 38 0 96 12
68 19 29 0 52
95 83 21 24 0
样例输出
样例输出1:
100
样例输出2:
137
提示
提示:
对于样例输入1:路飞选择从起点岛屿1出发,依次经过岛屿3,岛屿2,最后到达终点岛屿4。花费时间为20+50+30=100。
对于样例输入2:可能的路径及总时间为:
1,2,3,4,5: 18+45+96+52=211
1,2,4,3,5: 18+78+29+12=137
1,3,2,4,5: 13+38+78+52=181
1,3,4,2,5: 13+96+19+43=171
1,4,2,3,5: 98+19+45+12=174
1,4,3,2,5: 98+29+38+43=208
所以最短的时间花费为137
单纯的枚举在N=16时需要14!次运算,一定会超时。
思考:
1、搜索问题一定要想两方面剪枝,第一方面:可行性剪枝,第二方面:最优性剪枝。
2、最优性剪枝有几种常用形式:以此题为例
(1)预测当前状态到目标状态所能得到的最短时间,如果比现有最优解大,则剪枝。(预测型剪枝)
(2)如果当前状态时间已经超过最优解,则剪枝。(中间状态剪枝)
(3)如果原来到达目前状态有更好的方式,则剪枝。(中间状态剪枝)
3、一般先中间状态剪枝再预测型剪枝。
4、一定要看数据范围,由于N<=16,所以用二进制储存当前状态。
5、一定先计算时间复杂度再开始写代码。(果然还是太弱)
#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <queue>
using namespace std;
const int maxn = 20;
int road[maxn][maxn], mintime, vis[maxn], n, mint[maxn], nowstate, mint2[maxn][66000];
void dfs(int now, int t, int num, int nowstate)
{
if (now == n && num != n) return;
if (now == n && num == n) {
mintime = min (mintime, t);
return;
}
if (t >= mintime) return;//如果现在的时间大于最优解,剪枝
if (mint2[now][nowstate] == -1 || mint2[now][nowstate] > t){//如果到达目前状态的最优解优于此种方法到达目前状态最优解,则剪枝
mint2[now][nowstate] = t;
} else {
return;
}
int mint3 = t;
for (int j = 1; j <= n; j++) {//预测现在状态到最终状态的所需最少时间,如果大于现在已经求得的时间,则剪枝
if (!vis[j]) mint3 += mint[j];
//printf ("%d %d %d\n", now, j, mint3);
if (mint3 > mintime) return;
}
for (int j = 1; j <= n; j++) {
if (!vis[j]) {
nowstate += 1 << (j - 1);
vis[j] = 1;
dfs (j, t + road[now][j], num+ 1, nowstate);
vis[j] = 0;
nowstate -= 1 << (j - 1);
}
}
return;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen ("in.txt", "r", stdin);
#endif // ONLINE_JUDGE
scanf ("%d", &n);
mintime = 99999;
memset (vis, 0, sizeof(vis));
memset (road, 0, sizeof(road));
for (int i = 1; i <= n; i++) {
mint[i] = mintime;
}
memset (mint2, -1, sizeof(mint2));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
scanf ("%d", &road[i][j]);
if (road[i][j] < mint[j] && i != j) mint[j] = road[i][j];
}
}
vis[1] = 1;
dfs (1, 0, 1, 1);
printf ("%d", mintime);
return 0;
}