目录
2.3 纠缠判据二:纠缠熵(Entanglement Entropy)
前言
量子编程的核心价值源于量子系统特有的 “叠加” 与 “纠缠” 特性 —— 这两种特性是量子算法(如 Grover 搜索、Shor 因式分解)实现 “经典计算加速” 的根本原因,也是量子编程与经典编程的本质区别。其中,叠加态是量子系统的 “基础属性”,决定了量子态的多可能性表达;纠缠则是量子系统的 “关联属性”,构建了多量子比特间非局域的强关联,二者共同构成了量子计算的 “算力基石”。
本文将从 “数学严谨性” 与 “工程实用性” 双维度,系统拆解叠加态的数学表达与物理意义,深入讲解纠缠态的两大核心判据(部分转置正定判据、纠缠熵),并结合 Qiskit 等主流量子编程框架提供代码实践案例。内容既覆盖量子力学的核心理论,又聚焦量子编程中的实际应用场景(如纠缠态构造、纠缠程度量化),为开发者建立 “理论 - 代码 - 物理意义” 的完整认知链。
                      
                            
                        
                            
                            
                          
                          
                            
                  
                订阅专栏 解锁全文
                
            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
                    
              
            
                  
					55
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
					
					
					


            