以下整理自华罗庚文集数论卷Ⅱ(2010年版)
§4 可整除否?
略
§5 ψ(m)之讨论
定理一 若(m,m')=1,x过m之一完全剩余系,x'过m'之一完全剩余系,则mx'+m'x过mm'之一完全剩余系。
证:于mm'个数mx'+m'x中,若mx'+m'x≡my'+m'y (mod mm'),则mx'≡my' (mod m'),m'x≡m'y (mod m)。由(m,m')=1可得 x'≡y'(mod m'),x≡y (mod m)。
定理二 若(m,m')=1,x过m之一缩剩余系,x'过m'之一缩剩余系,则mx'+m'x过mm'之一缩剩余系。
定理三 若(m,m')=1,则ψ(mm')=ψ(m)ψ(m')。即ψ(m)为一积性函数。积性函数有一特质,只须知素数乘方之情形,即可推得其余。因若m之标准分解式为,则由定理三可知。
定理四 ; ;此处p过m之不同素因子。
证:不大于之个正整数中,有个为p之倍数,其他皆与p互素,故.
§6 同余方程
今往讨论形如 ax+b≡0(mod m) (1) 之方程,何时可解?有几个同余类适合此方程? 解同余方程(1),即为求方程ax+b=my之整解。此种不定一次方程已于§1.8中讨论及之。今再复述并进一步讨论如次:
若(a,m)=1,则由定理1.4.4可得x0,y0使ax0+my0=1,故x=-bx0即为(1)式之一解。
今往证其唯一性。若ax'+b≡0(mod m) , ax+b≡0(mod m) ,则a(x-x')≡0(mod m) 。由(a,m)=1,可得x≡x' (mod m) 。故有唯一之同余类适合(1)式。换言之,(1)仅有一解x适合0<=x<m。
若(a,m)=d>1,则d必整除b,不然无解,如此得 (2)由上证已知(2)式必有一唯一解x1适合,而皆为(2)之解,故对模m,,,,……,皆不同余,而均适合(1)式。故得:
定理一 若(a,m)|b,则(1)有(a,m)个互不同余之解,mod m。不然,则无解。
定理二 同余方程,有解之必要且充分条件为。若此条件适合,则其解数(对模m不同余者为)。
§7孙子定理
定理一 命m为m1及m2之最小公倍数,同余式x≡a1(mod m1),x≡a2(mod m2),有公解之条件为(m1,m2)|(a1-a2)。 (1)若(1)成立,则对m有唯一解。
定理二 若,则有唯一解,.此可由定理一行归纳法证明之。