华罗庚文集 数论卷Ⅱ 二、同余式(二)

以下整理自华罗庚文集数论卷Ⅱ(2010年版)

§4 p^2可整除2^{p-1}-1否?

 

§5 ψ(m)之讨论

定理一    若(m,m')=1,x过m之一完全剩余系,x'过m'之一完全剩余系,则mx'+m'x过mm'之一完全剩余系。

证:于mm'个数mx'+m'x中,若mx'+m'x≡my'+m'y (mod mm'),则mx'≡my' (mod m'),m'x≡m'y (mod m)。由(m,m')=1可得                         x'≡y'(mod m'),x≡y (mod m)。

定理二    若(m,m')=1,x过m之一缩剩余系,x'过m'之一缩剩余系,则mx'+m'x过mm'之一缩剩余系。

定理三    若(m,m')=1,则ψ(mm')=ψ(m)ψ(m')。即ψ(m)为一积性函数。积性函数有一特质,只须知素数乘方之情形,即可推得其余。因若m之标准分解式为m=p_1^{l_1}\cdots p_s^{l_s},p_1<p_2<\cdots <p_s,则由定理三可知\varphi (m)=\varphi (p_1^{l_1})\cdots \varphi (p_s^{l_s})

定理四    \varphi (p^l)=p^l(1-\frac{1}{p});         \varphi (m)=m\prod_{p|m}(1-\frac{1}{p});此处p过m之不同素因子。

证:不大于p^l\varphi (p^l)个正整数中,有p^{l-1}个为p之倍数,其他皆与p互素,故\varphi (p^l)=p^l-p^{l-1}=p^l(1-\frac{1}{p}).

 

§6 同余方程

今往讨论形如                                                                                                                                                                                                                      ax+b≡0(mod m)                                                                                                                                       (1) 之方程,何时可解?有几个同余类适合此方程?                                                                                                                                解同余方程(1),即为求方程ax+b=my之整解。此种不定一次方程已于§1.8中讨论及之。今再复述并进一步讨论如次:

若(a,m)=1,则由定理1.4.4可得x0,y0使ax0+my0=1,故x=-bx0即为(1)式之一解。

今往证其唯一性。若ax'+b≡0(mod m) , ax+b≡0(mod m) ,则a(x-x')≡0(mod m) 。由(a,m)=1,可得x≡x' (mod m) 。故有唯一之同余类适合(1)式。换言之,(1)仅有一解x适合0<=x<m。

若(a,m)=d>1,则d必整除b,不然无解,如此得\frac{a}{d}x+\frac{b}{d}\equiv 0(mod\,\, \, \frac{m}{d} ),\: (\frac{a}{d},\frac{m}{d})=1                                                           (2)由上证已知(2)式必有一唯一解x1适合0\leq x_1<\frac{m}{d},而x=x_1+\frac{m}{d}t皆为(2)之解,故对模m,x_1x_1+\frac{d}{m}x_1+2\frac{d}{m},……,x_1+(d-1)\frac{d}{m}皆不同余,而均适合(1)式。故得:

 

定理一    若(a,m)|b,则(1)有(a,m)个互不同余之解,mod m。不然,则无解。

定理二    同余方程a_1x_1+\cdots +a_nx_n+b\equiv 0(mod\: \: m),有解(x_1,\cdots ,x_n)之必要且充分条件为(a_1,\cdots ,a_n,m)|b。若此条件适合,则其解数(对模m不同余者为)m^{n-1}(a_1,\cdots ,a_n,m)

 

§7孙子定理

定理一    命m为m1及m2之最小公倍数,同余式x≡a1(mod  m1),x≡a2(mod  m2),有公解之条件为(m1,m2)|(a1-a2)。        (1)若(1)成立,则对m有唯一解。

定理二    若(m_i,m_j)=1(i\neq j),则x\equiv a_i(mod\, \, m_i),1\leq i\leq n有唯一解,mod \, \, m_1\cdots m_n.此可由定理一行归纳法证明之。

 

戳此参考 同余式、一次同余式、孙子定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值