并查集

建图,连接,查找相邻
原文连接

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
AC代码:

#include<iostream>
#include<string.h>
#include<vector>
#include<math.h>
#include<algorithm>
using namespace std;
int n,T;
int topn[1005],pre[1005];
double h,r;
typedef struct node{
	double x,y,z;
}node;
node nod;
vector<node> vec;
double cmp(const node &a,const node &b){
	return a.z<b.z;
}
double clac(int n0,int n1){
	node nod0=vec[n0];
	node nod1=vec[n1];
	double dis=(nod0.x-nod1.x)*(nod0.x-nod1.x)+(nod0.y-nod1.y)*(nod0.y-nod1.y)+
	(nod0.z-nod1.z)*(nod0.z-nod1.z);
	return sqrt(dis);
}
int find(int r){
	int x=r;
	while(r!=pre[r]){
		r=pre[r];
	}
	while(x!=r){
		int y=pre[x];
		pre[x]=r;
		x=y;
	}
	return r;
}
void Union(int x,int y){
	int fa=find(x);
	int fb=find(y);
	if(fa!=fb){
		pre[fa]=fb;
	}
}
void init(){
	int i,j,flag=-1;
	vec.clear();
	cin>>n>>h>>r;
	for(i=0;i<n;i++){
		cin>>nod.x>>nod.y>>nod.z;
		vec.push_back(nod);
	}
	sort(vec.begin(),vec.end(),cmp);
	i=vec.size()-1;
	if(vec[0].z-r>0||vec[i].z+r<h){
		cout<<"No"<<endl;
	}
	else {
		for(i=0;i<1005;i++){
			pre[i]=i;
		}
		for(i=0;i<vec.size();i++){
			for(j=i+1;j<vec.size();j++){
				double dis=clac(i,j);
				if(dis<=2*r){
					Union(i,j);
				}
			}
		}
		//cout<<"start"<<endl;
		for(i=0;i<vec.size();i++){
			if(vec[i].z-r>0) break;
			j=vec.size()-1;
			for(;j>=i;j--){
				if(vec[j].z+r<h) break;
				if(find(i)==find(j)){
					flag=0;
					break;
				}
			}
			if(flag==0) break;
		}
		if(flag==-1){
			cout<<"No"<<endl;
		}
		else if(flag==0){
			cout<<"Yes"<<endl;
		}
	}
}
int main(){
	int i,j;
	cin>>T;
	while(T--){
		init();
	}
	return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值