动态规划--机器负荷分配问题

在这里插入图片描述

from mip import Model, xsum, maximize, INTEGER

def optModel(m, n, g, h, a, b):
    model = Model("machine_load_distribution")

    x1 = [model.add_var(var_type=INTEGER) for i in range(n)]    #高负荷运行的机器数量

    x2 = [model.add_var(var_type=INTEGER) for i in range(n)]    #低负荷运行的机器数量

    model.objective = maximize(xsum(x1[i] * g + x2[i] * h for i in range(n)))

    model += x1[0] + x2[0] == m

    for i in range(1,n):
        model += x1[i] + x2[i] == x1[i-1] * a + x2[i-1] * b

    model.verbose = 0
    model.optimize()

    print(model.objective_value)
    lis1 = []
    lis2 = []
    for i in range(n):
        lis1.append(x1[i].x)
        lis2.append(x2[i].x)
    print(lis1)
    print(lis2)

if __name__ == '__main__':
    m, n, g, h, a, b = 1000, 5, 8, 5, 0.7, 0.9
    optModel(m, n, g, h, a, b)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值