关于numpy中函数dot()的用法。

这篇博客详细介绍了numpy中dot()函数的使用,包括一维之间的相乘、一维与二维相乘、二维之间的矩阵乘法以及多维之间的运算。内容涵盖不同维度数组的乘法规则,强调了在不同情况下,list或一维数组可以视为行向量或列向量,并解释了当矩阵维数不一致时的处理方式。
摘要由CSDN通过智能技术生成

参考了下面两位的回答,非常感谢。- numpy.dot 地址:实验方法 地址官方
另外,加上我自己的实验

函数说明
numpy.dot(a, b, out=None) 
参数说明:
a : ndarray 数组
b : ndarray 数组
out : ndarray, 可选,用来保存dot()的计算结果 

list的形态不固定,可以是行向量,也可以是列向量。 但是不能计算,列向量与行向量的运算。 具体的看四、

一、一维之间相乘

规律总结:对于两个一维数组来说,计算的是两个数组元素对应下标元素的乘积和(内积)。 list与向量相乘时,list相当于列向量。且与矩阵运算有稍微不同。

  • list 与 list 之间
list_a = np.array([1,2])
list_b = np.array([3,4])
print(list_a)  print(list_b)    #输出结果  [1 2]      [3 4]      
 
 #2.验证np.dot(A,B)形式
print np.dot(list_a,list_b)
print np.dot(list_b,list_a)
11                 11                 
  • list与列向量row
    list a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值