金华正睿Day1 期望与概率


列一列知识表

期望,概率,组合数学部分

问题:拿球问题,游走问题,经典问题,期望线性性练习题


<一次更新>

我回来补坑了!!然而我现在才知道关于期望概率的真正理解。。。。


行扒,今天不出意外地吊了 ,。,

不过依然没什么问题,这么感觉下来只要认真听就能听懂,不过实在是难以保持在线,就在懵逼的一刻,一题就挂了。

没办法,期望概率的概念还不清楚呢,求的是啥?怎么求?实际上很困扰。概念性的东西重要啊,不理解的话下面老师讲的什么都也只是空中楼阁。

晚上多搞搞吧。。。


概念

其实对于期望的概念是十分模糊的

  • 随机变量:有多种可能的取值的变量,大概是在样本空间中的随机一个变量,若无特殊说明,随机变量均为离散型随机变量,我才知道连续型随机变量是用到微积分求的。

  • P(X):随机变量X的概率,总状态m,目标数n,则概率为 n m \frac {n}{m} mn

  • E(X):离散型随机变量 X 的期望值, E ( X ) = ∑ i = 1 ∞ P ( X = i ) ∗ i E(X)=\sum_{i=1}^∞P(X=i)* i E(X)=i=1P(X=i)i

    E(X): 连续型随机变量X期望值: E ( X ) = ∫ − ∞ ∞ x   f ( x )   d x E(X)=\int _{-\infty}^{\infty}x \ f(x) \ dx E(X)=x f(x) dx

    (实际上不一定到正无穷,i的取值为X所有可能的情况)

  • 定义:无限意义下的期望:

    • 离散:P(x=xi)中xi是离散的,这时P是一个确定的值,且期望收敛

    • 连续:P(x=xi)中xi是连续的,这时P=0,但是积分不是零

  • 独立事件:互相不影响的事件,满⾜ P ( A B ) = P ( A ) P ( B ) P(AB)=P(A) P(B) P(AB)=P(A)P(B)

  • 对于独立事件,满足 E ( A B ) = E ( A ) E ( B ) E(AB)=E(A) E(B) E(AB)=E(A)E(B)

对于以上一点,又给出证明:

  • E ( A B ) = ∑ i = 0 n ∑ j = 0 n P ( A = i ) ∗ P ( B = j ) ∗ i ∗ j E(AB)=\sum_{i=0}^n \sum_{j=0} ^n P(A=i)*P(B=j)*i*j E(AB)=i=0nj=0nP(A=i)P(B=j)ij
  • = ( ∑ i = 0 n P ( A = i ) ∗ i ) ∗ ( ∑ j = 0 n P ( B = j ) ∗ j ) =(\sum_{i=0}^n P(A=i)*i)*(\sum_{j=0}^n P(B=j)*j) =(i=0nP(A=i)i)(j=0nP(B=j)j)
  • = E ( A ) ∗ E ( B ) =E(A)*E(B) =E(A)E(B)

这是课件里给的定义,但是,令人惊奇的是它并没有表述这玩意是啥,有什么用,其本质代表什么?

此外,同学给出了另一种解释,说期望就是概率乘权值的和,我:???

其实就是上面那个式子了.十分懵逼,但我还是听了下去。

以下是关于这些函数的性质及定义,直接搬上:

  • 当0<x<1时,我们有:
  • ∑ i = 0 ∞ x i = 1 1 − x \sum_{i=0}^∞ x^i=\frac{1}{1-x} i=0xi=1x1
  • ∑ i = 0 n x i = 1 − x n + 1 1 − x \sum_{i=0}^{n} x^i=\frac{1-x^{n+1}}{1-x} i=0nxi=1x1xn+1

同时,期望有一个十分优(gui)美(chu)的性质与技巧:

  • E [ X + Y ] = E [ X ] + E [ Y ] E[X+Y]=E[X]+E[Y] E[X+Y]=E[X]+E[Y]

证明:显然法(手动滑稽)好吧我也不会看起来不太重要

  • 对于离散变量X, P ( X = K ) = P ( X < = K ) − P ( X < = K − 1 ) P(X=K)=P(X<=K)-P(X<=K-1) P(X=K)=P(X<=K)P(X<=K1)

一些运用:


  • 1 . 有 n 个随机变量 X[1…n],每个随机变量都是从 1…S 中
    随机⼀个整数,求 Max(X[1…n]) 的期望

解:运用以上方法

  • 设Max(x[1…n])=Y(期望)
  • E ( Y ) = ∑ i = 1 n P ( Y = i ) ∗ i E(Y)=\sum_{i=1}^{n} P(Y=i)*i E(Y)=i=1nP(Y=i)i
  • 根据以上,得 ∑ i = 1 n [ P ( Y < = i ) − P ( Y < = i − 1 ) ] ∗ i \sum_{i=1}^{n}[P(Y<=i)-P(Y<=i-1)]*i i=1n[P(Y<=i)P(Y<=i1)]i
  • 设总方案为 S S S
  • E ( Y ) = ∑ i = 1 n [ ( i S ) n − ( i − 1 S ) n ] ∗ i E(Y)=\sum_{i=1}^{n} [(\frac{i}{S})^n-(\frac{i-1}{S})^n]*i E(Y)=i=1n[(Si)n(Si1)n]i

  • 2 . 概率为 p 的事件期望 1/p 次后发⽣

呃这个很好理解吧,概率和期望的一些奇怪关系,不过好像只能用于期望事件发生?不是很懂,希望可以再次讲解


又有优美性质*1:

  • E ( X ) = ∑ i = 1 ∞ P ( x > = i ) E(X)=\sum_{i=1} ^∞ P(x>=i) E(X)=i=1P(x>=i)

证明:

  • E ( X ) = ∑ i = 1 ∞ P ( x = i ) ∗ i E(X)=\sum_{i=1}^∞ P(x=i)*i E(X)=i=1P(x=i)i
  • = ∑ i = 1 ∞ P ( x = i ) ∗ ∑ j = 1 i 1 =\sum_{i=1}^∞ P(x=i)*\sum_{j=1}^i 1 =i=1P(x=i)j=1i1
  • = ∑ j = 1 ∞ 1 ∗ ∑ i > = j ∞ P ( x = i ) =\sum_{j=1}^∞1*\sum_{i>=j}^∞ P(x=i) =j=11i>=jP(x=i)
  • = ∑ j = 1 ∞ 1 ∗ P ( x > = j ) =\sum_{j=1}^∞ 1*P(x>=j) =j=11P(x>=j)

拿球问题

一类鬼畜问题,我试试直接搞吧,(反正也不会


  • 1 .箱子里有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后不放
    回,求取出的数字之和的期望

解:

  • 每次拿一个球,所以最终一定取到m个互不相同的数,记x[1…m],
  • 显然数字之和 S = ∑ 1 m x i S=\sum_1 ^m x_i S=1mxi
  • 期望值和 E ( S ) = E ( ∑ 1 m x i ) = ∑ 1 m E ( x i ) E(S)=E(\sum_1 ^m x_i)=\sum_1^m E(x_i) E(S)=E(1mxi)=1mE(xi)
  • 因为x数组为排列,所以 P ( x i = i ) = P ( x 1 = i ) P(x_i=i)=P(x_1=i) P(xi=i)=P(x1=i),两者等价
  • 所以 E ( x 1 ) = E ( x i ) E(x_1)=E(x_i) E(x1)=E(xi)
  • E ( x i ) = E ( x 1 ) = ∑ i = 1 n 1 n ∗ i = 1 n ∗ n ( n + 1 ) 2 = n + 1 2 E(x_i)=E(x_1)=\sum_{i=1}^n \frac {1}{n}*i=\frac {1}{n}*\frac{n(n+1)}{2}=\frac{n+1}{2} E(xi)=E(x1)=i=1nn1i=n12n(n+1)=2n+1
  • E ( ∑ i = 1 m x i ) = E ( x 1 ) ∗ m = n + 1 2 ∗ m E(\sum_{i=1}^{m} x_i)=E(x_1)*m=\frac{n+1}{2}*m E(i=1mxi)=E(x1)m=2n+1m
  • 同样直接推也是可以的:
  • ∑ i = 1 n 1 n ∗ i = 1 n ∗ ∑ i = 1 n i = 1 n ∗ n ( n + 1 ) 2 = n + 1 2 \sum_{i=1}^{n} \frac{1}{n}*i=\frac{1}{n}*\sum_{i=1}^{n} i=\frac{1}{n}*\frac{n(n+1)}{2}=\frac{n+1}{2} i=1nn1i=n1i=1ni=n12n(n+1)=2n+1

  • 2 .(谁能告诉我为啥这么多?唉我还是就写一篇吧)箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后放回,求取出的数字之和的期望。

证明:

  • 每次要放回,导致每次面临的局面一样,对于每次的期望值为序列平均值 n + 1 2 \frac{n+1}{2} 2n+1,拿m次,得最终答案
  • 答案 n + 1 2 ∗ m \frac{n+1}{2}*m 2n+1m

  • 3 .箱⼦⾥有 n 个球 1…n,你要从⾥⾯拿 m 次球,拿了后以
    p1 的概率放回,以 p2 的概率放回两个和这个相同的球,
    求取出的数字之和的期望

证明:

  • ∑ i = 1 ∞ [ ( 1 − p ) i − 1 − ( 1 − p ) i ] ∗ i = ∑ i = 1 ∞ ( 1 − p ) i ∗ ( i + 1 − i ) \sum_{i=1}^{∞}[(1-p)^{i-1}-(1-p)^i]*i=\sum_{i=1}^∞(1-p)^i*(_{i+1}^{-i}) i=1[(1p)i1(1p)i]i=i=1(1p)i(i+1i)
  • 依据 ∑ i = 0 ∞ ( 1 − p ) i = 1 1 − ( 1 − p ) = 1 p \sum_{i=0}^∞ (1-p)^i=\frac{1}{1-(1-p)}=\frac{1}{p} i=0(1p)i=1(1p)1=p1
  • 原式 = [ ( 1 − p ) i − ( 1 − p ) i + 1 ] ∗ ( i + 1 ) =[(1-p)^i-(1-p)^{i+1}]*(i+1) =[(1p)i(1p)i+1](i+1)
  • 之后一部分我不会了,但是答案依旧是 n + 1 2 ∗ m \frac{n+1}{2}*m 2n+1m
  • (回来补坑,见大佬们个个神武,不堪懈怠啊

游走问题

  • 1.在⼀条 n 个点的链上游⾛,求从⼀端⾛到另⼀端的概率。

解:

  • x i x_i xi为从i出发到达i+1的期望步数
  • 易得 E [ 1 ] = 1 E[1]=1 E[1]=1
  • E [ i ] = 1 2 + 1 2 ∗ ( E [ x i ] + E [ x i − 1 ] + 1 ) = E [ x i − 1 ] + 2 E[i]=\frac{1}{2}+\frac{1}{2}*(E[x_i]+E[x_{i-1}]+1)=E[x_{i-1}]+2 E[i]=21+21E[xi]+E[xi1]+1=E[xi1]+2
  • E [ Y ] = ∑ i = 1 n − 1 E [ x i ] = ( n − 1 ) 2 E[Y]=\sum_{i=1}^{n-1}E[x_i]=(n-1)^2 E[Y]=i=1n1E[xi]=(n1)2

  • 2.在⼀张 n 个点的完全图上游⾛,求从⼀个点⾛到另⼀个点的概率

解:

  • 由期望步数得 E [ p ] = 1 p E[p]=\frac{1}{p} E[p]=p1
  • 所以每次有 1 n − 1 \frac{1}{n-1} n11的概率成功
  • 所以成功期望为 ( n − 1 ) (n-1) (n1)

没啦

那这篇就到这里,下次一定会回来补哦。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值