生命之树–树形DP
原题:
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集 S,使得对于 S 中的任意两个点 a,b都存在一个点列 {a,v1,v2,…,vk,b} 使得这个点列中的每个点都是 S 里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得 S 中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过 atm 的努力,他已经知道了上帝给每棵树上每个节点上的整数。
但是由于 atm 不擅长计算,他不知道怎样有效的求评分。
他需要你为他写一个程序来计算一棵树的分数。
题意:
给定一颗树,求数的最大连通子序列。无向树。
思路:
树形DP通常可以用递归来求解,求解每个节点的最大连通子序列,根节点的最大连通子序列等于子节点的最大连通子序列之和。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2rj0iWFt-1584575834408)(C:\Users\15209\Pictures\博客\dp004.jpg)]
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=100010;
typedef long long LL;
LL f[N];
int w[N];
int n;
int h[N],e[2*N],ne[N*2],idx;
void add(int a,int b)
{
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
void dfs(int u,int father)
{
f[u]+=w[u];
for(int i=h[u];i!=-1;i=ne[i])
{
int j=e[i];
if(j==father) continue;
dfs(j,u);
f[u]+=max(f[j],0ll);
}
}
int main()
{
scanf("%d",&n);
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
{
scanf("%d",&w[i]);
}
for(int i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b),add(b,a);
}
dfs(1,-1);
LL res=f[1];
for(int i=2;i<=n;i++) res=max(res,f[i]);
printf("%lld\n",res);
return 0;
}
总结:
1.max()函数比较的俩个数类型要一致。
2.递归的时候为了防止向上递归,可以增加一个参数。