本篇文章为Datawhale 动手学深度学习(d2l)环境配置,想要具体了解可以跳转课程视频:手把手带你配动手学深度学习的环境,同时也附上沐神的《动手学深度学习》,以及沐神在b站分享的配套视频:【完结】动手学深度学习 PyTorch版
Datawhale 动手学深度学习(d2l)环境配置
环境配置
众所周时,环境配置是入门深度学习的第一道门槛,一杯茶,一包烟,一个环境配一天并不是一句空谈,反而是入门时的真实写照。
本节内容主要讲述了linux下anaconda的环境配置与windows下miniconda的环境配置,通过实际操作进行了详细的讲解,从conda的安装到环境的创建,pytorch的安装,jupyter的使用以及动手学深度学习代码的fork等都进行了手把手教学,跟随视频即可完成环境的搭建。
下面简要记录下操作步骤:
linux环境配置
- Anaconda安装配置
从官网下载所需anaconda并进行安装
# 以 Anaconda3-2022.10-Linux-x86_64.sh 为例
bash Anaconda3-2022.10-Linux-x86_64.sh
对conda进行换源,通过 vim ~/.condarc 打开 .condarc 文件并将其修改为如下内容(清华大学开源软件镜像站)
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
- 配置环境
# 创建名为 d2l 的虚拟环境
conda create –n d2l python=3.8
# 激活环境
conda activate d2l
# 使用 pip 安装课程所需的库文件
pip install numpy pandas matplotlib torch torchvision torchaudio jupyterlab -i https://mirror.sjtu.edu.cn/pypi/web/simple
- git 仓库
# 安装git
apt install git # (ubuntu 环境)
yum install git # (CentOS环境)
# clone 仓库(此处的链接也可以替换成fork后自己的代码仓地址)
git clone https://openi.pcl.ac.cn/Datawhale/d2l
- jupyter
# 先设置jupyter lab 密码
jupyter lab password
# 启动jupyterlab
Jupyter lab –-ip 0.0.0.0 –-allow-root(如果使用root账户进行实验的话需要加上—allow-root)
Windows环境配置
进行深度学习还是推荐使用linux系统进行学习,有Windows需求的小伙伴可以参照课程进行学习,课程中同样也是手把手教学,十分详细,这里不在赘述
个人实践
这里我使用的wsl进行的环境安装,安装方法与在linux上安装基本一致,具体安装步骤可参考之前我之前发布的一篇文章Ubuntu 深度学习环境配置方案,使用wsl与vscode搭配进行深度学习体验下来感觉也很不错,感兴趣的小伙伴也可以了解一下