Datawhale 动手学深度学习(d2l)环境配置

本篇文章为Datawhale 动手学深度学习(d2l)环境配置,想要具体了解可以跳转课程视频:手把手带你配动手学深度学习的环境,同时也附上沐神的《动手学深度学习》,以及沐神在b站分享的配套视频:【完结】动手学深度学习 PyTorch版


Datawhale 动手学深度学习(d2l)环境配置

环境配置

众所周时,环境配置是入门深度学习的第一道门槛,一杯茶,一包烟,一个环境配一天并不是一句空谈,反而是入门时的真实写照。

本节内容主要讲述了linux下anaconda的环境配置与windows下miniconda的环境配置,通过实际操作进行了详细的讲解,从conda的安装到环境的创建,pytorch的安装,jupyter的使用以及动手学深度学习代码的fork等都进行了手把手教学,跟随视频即可完成环境的搭建。

下面简要记录下操作步骤:

linux环境配置

  1. Anaconda安装配置

  从官网下载所需anaconda并进行安装

# 以 Anaconda3-2022.10-Linux-x86_64.sh 为例
bash Anaconda3-2022.10-Linux-x86_64.sh

  对conda进行换源,通过 vim ~/.condarc 打开 .condarc 文件并将其修改为如下内容(清华大学开源软件镜像站)

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  1. 配置环境
# 创建名为 d2l 的虚拟环境
conda create –n d2l python=3.8
# 激活环境
conda activate d2l 
# 使用 pip 安装课程所需的库文件
pip install numpy pandas matplotlib torch torchvision torchaudio jupyterlab -i https://mirror.sjtu.edu.cn/pypi/web/simple
  1. git 仓库
# 安装git
apt install git # (ubuntu 环境)
yum install git # (CentOS环境)
# clone 仓库(此处的链接也可以替换成fork后自己的代码仓地址)
git clone https://openi.pcl.ac.cn/Datawhale/d2l
  1. jupyter
# 先设置jupyter lab 密码
jupyter lab password
# 启动jupyterlab
Jupyter lab –-ip 0.0.0.0-allow-root(如果使用root账户进行实验的话需要加上—allow-root)

Windows环境配置

进行深度学习还是推荐使用linux系统进行学习,有Windows需求的小伙伴可以参照课程进行学习,课程中同样也是手把手教学,十分详细,这里不在赘述


个人实践

这里我使用的wsl进行的环境安装,安装方法与在linux上安装基本一致,具体安装步骤可参考之前我之前发布的一篇文章Ubuntu 深度学习环境配置方案,使用wsl与vscode搭配进行深度学习体验下来感觉也很不错,感兴趣的小伙伴也可以了解一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值