看了其他大佬的教程,结合我自己的电脑配置(cuda version:12.6),总结如下:
1. 在miniconda中创建一个Python版本为3.9的虚拟环境。
一定要3.9!!!我创建过Python3.8的导致后面安装d2l时一直报错,如下图,原来是版本之间不兼容的问题。
2. 在pytorch官网下载与自己电脑cuda版本匹配的pytorch。
pytorch官网地址: Start Locally | PyTorch
以我的电脑为例,cuda version:12.6(用 nvidia-smi 命令查看),则下载cuda12.4的版本(没有更高版本了)。注:如果先开始没有更改conda的默认源为清华源或国内其他镜像源,建议修改一下。
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
3. 安装d2l包。
按照书上的版本安装,如果安装0.15或者更低版本的话,也许在之后学习的章节中出现无法运行和显示的错误。
pip install d2l==0.17.6
等待一会就可以安装好了。如果中途报timeout的错误,就多运行几次命令。
至于有些博主说的numpy版本不对的问题,我觉得不用管它,直接安装d2l就好,它会在安装过程中自动卸载已存在的numpy并安装符合自己要求的版本的。