1、前序遍历算法
void PreOrderTraverse(BiTree T)
{
if(T == NULL)
return;
do sth;
PreOrderTraverse(T-left);
PreOrderTraverse(T-right);
}
2、中序遍历算法
void InOrderTraverse(BiTree T)
{
if(T == NULL)
return;
InOrderTraverse(T-left);
do sth;
InOrderTraverse(T-right);
}
3、后序遍历算法
void PostOrderTraverse(BiTree T)
{
if(T == NULL)
return;
PostOrderTraverse(T-left);
PostOrderTraverse(T-right);
do sth;
}
4、之所以称为二叉搜索树,是因为这种二叉树能大幅度提高搜索效率。如果一个二叉树满足:对于任意一个节点,其值不小于左子树的任何节点,且不大于右子树的任何节点(反之亦可),则为二叉搜索树。如果按照中序遍历,其遍历结果是一个有序序列。因此,二叉搜索树又称为二叉排序树。
5、堆是这样一种完全二叉树:每个节点的值都不小于其左右孩子几点的值称为大顶堆;每个节点的值都不大于其左右孩子节点的值称为小顶堆。
6、平衡二叉树
平衡二叉树也叫自平衡二叉搜索树(Self-Balancing Binary Search Tree),所以其本质也是一颗二叉搜索树,不过为了限制左右子树的高度差,避免出现倾斜树等偏向于线性结构演化的情况,所以对二叉搜索树中每个节点的左右子树作了限制,左右子树的高度差称之为平衡因子,树中每个节点的平衡因子绝对值不大于 ,此时二叉搜索树称之为平衡二叉树。这是平衡二叉搜索树吧。
满足以下两点的就是平衡二叉树:
1.左右子树的高度差不能超过1
2.左右子树也是平衡二叉树
需要注意的是空树也是平衡二叉树