目录
题目描述
功能:输入一个正整数,按照从小到大的顺序输出它的所有质因子(重复的也要列举)(如180的质因子为2 2 3 3 5 )
最后一个数后面也要有空格
输入描述
输入一个long型整数
输出描述:
按照从小到大的顺序输出它的所有质数的因子,以空格隔开。最后一个数后面也要有空格。
示例1
输入
180
输出
2 2 3 3 5
做题思路
1. 任何非质数的整数一定可以表达成质数的乘积
2. 重复的质数也要被列举出来
3. 以 180 为例,从2开始(2为最小的质数),
- 180%2==0,2为180的质因数,此时剩余90,要继续验证2是否为90的质因数,得45,此时可确定2不是45的质因数。
- 那么要+1得3,同时45%3==0,3为45的质因数,得15,继续验证3是否为15的质因数,得5,此时可确定3不是5的质因数
- 那么要+1得4,5%4!=0必成立,此时可确定4不是5的质因数
因为4不为质数,一定可以表达为两个比4小得质数得乘积,所以5%4一定不等于0,否则在之前除以更小的质数的时候,5一定会被除掉。说这个是为了证明非质数一定不会成为质因数,因为取余的时候一定不会为0,不用单独的去判断一个数是不是质数,再去考虑能否是因数。- 那么要+1得5,5%5等于0,5/5==1,5为5的质因数,结束
- 注意,+1+1那么加到何时是个头,一个合数的质因数,一定是小于等于自己的平方根的,所以只用加上这样一个判定条件即可
- 但是!!一个质数的质因数,是会大于自己的平方根的,所以加了平方根的限定条件后,丢失了一个质因数(也就是不会除到等于1,以38为例想一下就明白了,所以要判断一下,除到最后的那个数是不是等于1,如果等1,说明是合数,就结束程序,不过不等于1,要把其输出出来)
AC代码
#include<iostream>
#include<math.h>
using namespace std;
int main(){
long num;
cin >> num;
long _num = sqrt(num);
for(long i=2; i<=_num; i++){
while( num%i==0 ){
cout << i << " ";
num /= i;
}
}
if( num>1 ){
cout << num << " ";
}
return 0;
}
该博客介绍了如何找出一个正整数的所有质因子。通过从2开始,不断除以能整除输入数的质数,直到商为1,过程中记录下所有质因子。博主强调了不需要单独判断一个数是否为质数,因为合数在除以小于等于其平方根的质数时,余数不可能为0。此外,当除到最后得到1时,需要检查是否为合数,如果是,则结束程序。

1549

被折叠的 条评论
为什么被折叠?



