Pytorch学习
归根结底不优秀
这个作者很懒,什么都没留下…
展开
-
02 LinerRegression
问题引入:这就是个简单的线性回归函数的计算问题 现在我们已知一次函数 y = 4x + 9,bias为一个服从标准正态分布的随机随机数值。那么通过 y = 4x + 9 + bias,当我们给定一系列x值:x1,x2,...,xn值后,我们可以得到一组离散的点集(x1, y1),(x2, y2),...,(x3, y3)。很明显这些点一定是围绕着y = 4x + 9 这条直线波动的。 上面的思维是我们已知直线方程 y = 4x +9 而后推导出一组离散点集(x,y)。那我们如何反过来,即通过观测得.原创 2020-08-23 15:13:59 · 219 阅读 · 0 评论 -
01 梯度下降、学习率、损失函数
概念引入 基于一个自变量x,比如时间,我们可以得到其对应的观测值y,比如温度值。不停的观测,我们可以得到一系列的真实对应关系:(时间,温度的真实值),即(x1, y1),(x2, y2), ..., (xn, yn)。 现在我们知道了温度和时间之间是呈正比例关系的,即y = k*x。很显然,我们不知道k应该取到多少,但是我们可以假设。 现在我们假设k=2,也就是我们猜想温度和时间的关系是 y=2*x。那么由上述得到的真实对应关系,我们可以得到一系列预测对应关系:(时间,温度的预测值),即(x1, 2原创 2020-08-23 15:14:57 · 593 阅读 · 0 评论