算法分析与设计作业5

1. 问题
蛮力算法和分治法解最近对问题
2. 解析

  1. 蛮力算法:通过两个for暴力求最小距离即可
  2. 将所有点x,y升序排序后二分,递归找左右区间的最小值,分三种情况求最小:
    (1) 两点在左区间
    (2) 两点在右区间
    (3) 一个在左区间一个在右区间
    3. 设计
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cctype>
#include<iomanip>
#include<map>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<set>
#include<cctype>
#include<string>
#include<stdexcept>
#include<fstream>
#include<sstream>
#include<sstream>
#define mem(a,b) memset(a,b,sizeof(a))
#define debug() puts("what the fuck!")
#define dedebug() puts("what the fuck!!!")
//#define int long long
#define ll long long
#define ull unsigned long long
#define speed {ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); };
using namespace std;
const double PI = acos(-1.0);
const int maxn = 2e5 + 10;
const int N = 5e2 + 10;
const ll INF = 1e18;
const ll mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const double eps_0 = 1e-9;
const double gold = (1 + sqrt(5)) / 2;
template<typename T>
inline void rd(T& x) {
	int f = 1;
	x = 0;
	char c = getchar();
	while (c<'0' || c>'9') {
		f = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9') {
		x = x * 10 + c - '0';
		c = getchar();
	}
	x *= f;
}
template<typename T>
inline T gcd(T a, T b) {
	return b ? gcd(b, a % b) : a;
}
int n;
int s[maxn];
struct point {
	double x, y;
	point() {};
	point(double x, double y) :x(x), y(y) {};
	bool operator<(const point& a)const {
		if (x == a.x)return y < a.y;
		return x < a.x;
	}
}p[maxn];
bool cmp(int a, int b) {
	return p[a].y < p[b].y;
}
double dis(point& a, point& b) {
	return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
void forceClosePoint() {
	int pos1 = 0, pos2 = 0;
	double minn = inf;
	for (int i = 1; i <= n; ++i) {
		for (int j = i + 1; j <= n; ++j) {
			if (dis(p[i],p[j]) < minn) {
				minn = dis(p[i], p[j]);
				pos1 = i;
				pos2 = j;
			}
		}
	}
	printf("Close point:P%d P%d\n", pos1, pos2);
	printf("Distance by force: %.6lf\n", minn);
}
double divideClosePoint(int l, int r) {
	if (l == r)return inf;
	if (l + 1 == r)return dis(p[l], p[r]);
	int mid = (l + r) >> 1;
	double ans = min(divideClosePoint(l, mid), divideClosePoint(mid + 1, r));
	int cnt = 0;
	for (int i = l; i <= r; i++){
		if (p[mid].x - ans <= p[i].x && p[i].x <= p[mid].x + ans)
			s[cnt++] = i;
	}
	sort(s, s + cnt, cmp);
	for (int i = 0; i < cnt; i++){
		int k = min(cnt, i + n / 2);
		for (int j = i + 1; j < k; j++)
		{
			if (p[s[j]].y - p[s[i]].y > ans) break;
			ans = min(dis(p[s[i]], p[s[j]]), ans);
		}
	}
	return ans;
}
signed main() {
	cin >> n;
	for (int i = 1; i <= n; ++i) {
		double x, y;
		cin >> x >> y;
		p[i] = point(x, y);
	}
	sort(p + 1, p + 1 + n);
	forceClosePoint();
	double ans = divideClosePoint(1, n);
	printf("Distance by divide :%.6lf\n", ans);
	return 0;
}


4. 分析

  1. O(N2)
  2. O(NlogN)
    5. 源码
  3. ClosePoint
国科大的算法设计分析相关1-5章复习题 第一章样例: 1.讲义习题一: 第1(执行步改为关键操作数)、第2、3、6、7题 习题一 1答:执行步4pmn+3pm+2m+1;关键操作2n*m*p 2方法一答:2n-2次 方法二答:2n-2次 3 1)证明:任给c,n>c,则10n2>cn 。不存在c使10n22c时,logn>c,从而n2logn>=cn2,同上。 6 答:logn,n2/3,20n,4n2,3n,n! 7 答:1)6+n 2) 3)任意n 2.讲义习题二:第5题。 答:c、e是割点。每点的DFN、L值:A1,1、B2,1、C3,1、D4,4、E5,1、F6,5、G7,5。最大连通分支CD、EFG、ABCE。 3.考虑下述选择排序算法: 输入:n个不等的整数的数组A[1..n] 输出:按递增次序排序的A For i:=1 to n-1 For j:=i+1 to n If A[j]<A[i] then A[i] A[j] 问:(1)最坏情况下做多少次比较运算?答1+2+..+n-1=n(n-1)/2 (2)最坏情况下做多少次交换运算?在什么输入时发生? n(n-1)/2,每次比较都交换,交换次数n(n-1)/2。 4.考虑下面的每对函数f(n)和g(n) ,比较他们的阶。 (1) f(n)=(n2-n)/2, g(n)=6n (2)f(n)=n+2 , g(n)=n2 (3)f(n)=n+nlogn, g(n)=n (4)f(n)=log(n!), g(n)= 答:(1)g(n)=O(f(n)) (2)f(n)=O(g(n) (3)f(n)=O(g(n) (4)f(n)=O(g(n) 5.在表中填入true或false . 答案: f(n) g(n) f(n)=O(g(n) f(n)=(g(n)) f(n)=(g(n)) 1 2n3+3n 100n2+2n+100 F T F 2 50n+logn 10n+loglogn T T T 3 50nlogn 10nloglogn F T F 4 logn Log2n T F F 5 n! 5n F T F 6.用迭代法求解下列递推方程: (1) (2) ,n=2k 答:(1)T(n)=T(n-1)+n-1=T(n-2)+n-2+n-1 =…=T(1)+1+2+…+n-1=n(n-1)/2=O(n2) (2)T(n)=2T(n/2)+n-1=2(2T(n/4)+n/2-1)+n-1 =4T(n/4)+n-2+n-1=4(2T(n/23)+n/4-1)+n-2+n-1 =23T(n/23)+n-4+n-2+n-1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值