最大流问题的几种模板和思路

本文介绍了最大流问题的解决思路,通过搜索找到s-t路径并记录剩余量,利用反向流量实现“反悔”操作。讨论了如何优化空间占用,通过流量更新替代额外的“流量”数组,使算法更高效。总结了最大流算法的核心,并提到使用BFS分层搜索的优化方法。

核心思路:

(首先感谢网络大牛代码 附大牛网址:https://blog.csdn.net/huzhengnan/article/details/7766446) 

我们首先 采用搜索的方式 来找到一条从 s-t 的路径 并且储存记录剩余量,之后采用链表的方式记录下我们走的每一条路,反向回去更新路的流量(正是有了反向流量 我们在搜素的时候 才能够有一个"反悔"的机会)最终,找到重点,记录最大流。

#include<iostream>
#include<queue>
using namespace std;
const int N=201;
const int INF=99999999;
int n,m,sum;//s,t为始点和终点
int flow[N][N],cap[N][N],a[N],pre[N];
//分别为:flow[u][v]为<u,v>流量、cap[u][v]为<u,v>容量、a[i]表示源点s到节点i的路径上的残留量、pre[i]记录i的前驱
void Edmonds_Karp(int s)
{
queue<int>q;//队列,用bfs找增广路
while(1)
{
   memset(a,0,sizeof(a));//每找一次,初始化一次
   a[s]=INF;
   q.push(s);//源点入队
   int sum=0;
   while(!q.empty())
   {
    int u=q.front();
    q.pop();
    for(int v=1;v<=m;v++)
    {
     if(!a[v]&&flow[u][v]<cap[u][v])
     {
      p[v]=u;
      q.push(v);
      a[v]=min(a[u],cap[u][v]-flow[u][v]);//s-v路径上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值