求 n 以内 与n互质数之和

首先 我们可以发现与 n 互质的数有这样一个规律

gcd ( i , n ) == 1 那么 gcd ( n-i, n ) == 1

证明方法选择反证

如果 i 与 n 互质, n-i 与 n 有公因数,那么 我们设这个公因数 为 p 

p * a1 = n-i     p * a2 = n  那么 a2-a1 =  i / p 我们知道 i / p 必定得为一个整数

这个公式才成立, 既然是整数 那么 p 也必定得为 i 的一个因子, 这样不满足 i, n 互质

证明完毕

 所以 我们知道每个与 n 互质的数 其实是一种 成对出现的存在,而且她们的和 为 n 

那么 n 以内与 n 互质的 数之和 就很显而易见  : (至于欧拉函数是什么,理解成一个函数,求n以内与n互质的数的 "个数")

                                                                   phi( n )  ( 欧拉函数 )  / 2   * n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值