CF 1077F

分简单版和难版

题意 就是 我们要在 长度为 n 的数组里取 x 个数字,同时每个数字之间间隔不得超过 k, 同时 取数字的起点和 1 距离也不得超过 k ,终点和 n 距离也不得超过k

我们发现 每次取数字假设取 i 那么 就是 要在 i-k 这个区间内挑选最大值作为取的这个数的前一个,

开dp 数组, dp [ i ] [ j ]  代表取 第 i 个数字为 第 j 个数字

那么 dp [ i ]  [ j ]  = max ( dp [ t ] [ j -1 ] ) + a[ i ] ( i - k <= t <= i - 1 )

第一个简单版就是 暴力 O(N^3)

困难版我们发现, 数据范围 在 1e5 以上,那显然 不能 暴力

我们就可以维护一个 单调递减队列,控制滑动区间长度 为 k - 1 就好了,这样优化一下就可以了,当然不能取得话输出 -1

 

#include<bits/stdc++.h>
using namespace std;
#define ll long long int
const int maxn = 5005;
const ll INF = 0x7f;
int n,k,x, a[maxn];
ll dp[maxn][maxn], que[maxn];
int main()
{
    scanf("%d%d%d",&n,&k,&x);
    for (int i=1;i<=n;i++) scanf("%d",&a[i]);
    memset(dp, -INF, sizeof dp);
    dp[0][0] = 0;
    for (int j=1;j<=x;j++)
    {
        que[0] = 0;
        int l = 0, r = 1;
        for (int i=1;i<=n;i++)
        {
            while(l<r && que[l]<i-k)l++;
            dp[i][j] = dp[que[l]][j-1] + a[i];
            while(l<r && dp[i][j-1]>=dp[que[r-1]][j-1])r--;
            que[r++] = i;
        }
    }
    ll ans = -INF;
    for(int i=n-k+1;i<=n;i++)ans = max(ans, dp[i][x]);
    if(ans<0)ans=-1;
    printf("%lld\n",ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值