分简单版和难版
题意 就是 我们要在 长度为 n 的数组里取 x 个数字,同时每个数字之间间隔不得超过 k, 同时 取数字的起点和 1 距离也不得超过 k ,终点和 n 距离也不得超过k
我们发现 每次取数字假设取 i 那么 就是 要在 i-k 这个区间内挑选最大值作为取的这个数的前一个,
开dp 数组, dp [ i ] [ j ] 代表取 第 i 个数字为 第 j 个数字
那么 dp [ i ] [ j ] = max ( dp [ t ] [ j -1 ] ) + a[ i ] ( i - k <= t <= i - 1 )
第一个简单版就是 暴力 O(N^3)
困难版我们发现, 数据范围 在 1e5 以上,那显然 不能 暴力
我们就可以维护一个 单调递减队列,控制滑动区间长度 为 k - 1 就好了,这样优化一下就可以了,当然不能取得话输出 -1
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
const int maxn = 5005;
const ll INF = 0x7f;
int n,k,x, a[maxn];
ll dp[maxn][maxn], que[maxn];
int main()
{
scanf("%d%d%d",&n,&k,&x);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
memset(dp, -INF, sizeof dp);
dp[0][0] = 0;
for (int j=1;j<=x;j++)
{
que[0] = 0;
int l = 0, r = 1;
for (int i=1;i<=n;i++)
{
while(l<r && que[l]<i-k)l++;
dp[i][j] = dp[que[l]][j-1] + a[i];
while(l<r && dp[i][j-1]>=dp[que[r-1]][j-1])r--;
que[r++] = i;
}
}
ll ans = -INF;
for(int i=n-k+1;i<=n;i++)ans = max(ans, dp[i][x]);
if(ans<0)ans=-1;
printf("%lld\n",ans);
return 0;
}