YOLOv4+tensorflow2.0训练自己的数据

本文介绍了如何在tensorflow2.0环境下配置YOLOv4的训练环境,包括从安装anaconda、创建tensorflow2.0-gpu虚拟环境、安装CUDA和cudnn到安装tensorflow GPU版。接着,文章详细讲解了如何下载权重文件并转换,以及在数据集上进行训练和测试,包括图片和视频的检测。最后,提供了数据集制作和配置文件修改的指导,以便使用自己的数据进行训练。
摘要由CSDN通过智能技术生成

一、环境配置

1.1 实验源码

在YOLOv4原文给出了基于Darknet的实验源码【下载地址】(若链接不可用,请自行复制下面这个网址:https://github.com/AlexeyAB/darknet),该源码核心部分是利用**C++**写的,但是大部分学习目标检测的人都习惯使用python语言,因为python语言提供了大量的框架,更加的简便。因此,要读懂这份源码可能会有一些困难。
为了方便其他研究者,作者在上述源码下方给出了基于其他框架的代码链接,当然也包括了基于tensorflow实现的源码【下载地址】,本篇文章使用的是tensorflow框架中的第一份源码。
在这里插入图片描述
下载后直接解压就行,解压出来是下面这样的:
在这里插入图片描述

1.2 环境要求

在本文使用的源码中,作者明确指出了,改源码使用的是tensorflow2.0版本,所以在实验之前,需要保证自己电脑上装的是2.0版本的tensorflow,如果你的电脑上装的是1.0版本的,则需要提升tensorflow的版本,因为2.0版本和1.0版本在一些函数的调用上会有所不同,如果使用1.0版本的tensorflow来运行该代码,改错会改到让你怀疑人生。所以,还是乖乖的换2.0版本吧!!!
这里我使用的tensorflow版本是2.3.0,搭配的Keras版本是2.3.1
我使用的是anaconda来搭建环境,主要步骤如下:

1.2.1 安装anaconda

anaconda的安装步骤见另一篇文章:Anaconda 安装教程

1.2.2 在anaconda中创建tensorflow2.0-gpu虚拟环境

为了不影响其他搭建好的编译环境,这里选择重新创建一个虚拟环境,在anaconda中创建虚拟环境的方法见另一篇文章:anaconda中创建虚拟环境

1.2.3 安装CUDA和cudnn

由于模型比较大,需要使用GPU进行训练,使用GPU训练就需要安装CUDA和cudnn,具体的安装方法可以参考我的另一篇文章:CUDA和cudnn的安装

1.2.4 1.4 安装tensorflow GPU版

由于模型比较大,需要在gpu下运行,所以在装tensorflow的时候需要装gpu版本的,由于该源码要求使用tensorflow2.0版本,所以这里我装的是tensorflow-gpu2.3.0
第一步:打开命令提示符
第二步:激活tensorflow2.0-gpu环境(我装的虚拟环境取名为tensorflow2.0-gpu),输入命令:

activate tensorflow2.0-gpu

第三步:安装tensorflow-gpu,输入命令:

pip install  tensorflow-gpu==2.3.0

然后就是等待安装完成,可能需要一定的时间。
第四步:测试tensorflow-gpu是否安装成功,接着上一步,先输入命令打开python编译环境:

python 

再输入命令导入tensorflow模块,需要注意的是,虽然装的是tensorflow-gpu,但是我们在导入模块的时候仍然使用的是tensorflow:

import tensorflow as tf

若能成功导入模块,则说明安装成功,否则就需要查看在哪里出了错,重新安装了。
另外还可以输入以下命令来查看tensorflow的版本:

tf.__version__

二、环境测试

在训练自己的数据集之前,先测试一下能不能利用作者训练的好的权重进行而检测。

2.1 下载权重文件

测试之前需要准备YOLOv4权重文件,可以去百度云自行提取,提取密码:o6hd
将下载的权重文件yolov4.weights放到tensorflow-yolov4-tflite-master\data文件夹下
在这里插入图片描述

2.2 权重文件转换

在这一步需要将前面下载的权重文件yolov4.weights转换成在tensorflow环境下使用的文件类型,打开命令提示符,进入主目录(tensorflow-yolov4-tflite-master\):
在这里插入图片描述
输入下面的命令:

python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4-416 --input_size 416 --model yolov4 

运行结束后,将会在tensorflow-yolov4-tflite-master\checkpoints文件夹下产生一个yolov4-416文件夹

### 回答1: yolov3是一种目标检测算法,使用TensorFlow 2.实现。它是一种基于深度学习的算法,可以在图像中检测出多个物体,并给出它们的位置和类别。TensorFlow 2.是一种流行的深度学习框架,可以帮助开发者快速构建和训练深度学习模型。使用TensorFlow 2.实现yolov3可以帮助我们更好地理解和应用深度学习算法。 ### 回答2: YOLOv3是一种流行的目标检测算法,它结合了实时性和准确性。TensorFlow 2.0是Google发布的一款深度学习框架,具有易用性和灵活性。 YOLOv3的基本原理是将输入图像分成多个网格,每个网格负责检测其中的多个目标。它使用卷积神经网络(CNN)来提取图像特征,并将预测分为三个尺度。通过为每个尺度计算不同大小的锚框(anchor)和类别概率,YOLOv3可以检测不同大小和类别的目标。此外,YOLOv3还使用了一种称为"Darknet53"的主干网络来提取图像特征。 TensorFlow 2.0提供了对YOLOv3目标检测算法的支持。它提供了易于使用的API,可以方便地构建和训练YOLOv3模型。此外,TensorFlow 2.0还提供了一系列方便的工具和函数,用于数据预处理、模型调优和结果可视化等。 使用TensorFlow 2.0构建YOLOv3模型的步骤包括:准备训练数据集、定义模型架构、训练模型和评估模型。首先,需要准备一个包含目标标签和边界框的数据集。然后,定义YOLOv3模型的网络架构,并根据数据集进行模型训练训练完成后,可以使用训练好的模型对新图像进行目标检测,并评估模型的性能。 总之,YOLOv3与TensorFlow 2.0结合使用可以提供一个强大的目标检测解决方案。它们的结合使得构建、训练和评估YOLOv3模型变得更加简单和高效。 ### 回答3: YOLOv3是一种用于目标检测的深度学习算法,它在TensorFlow 2.0框架上得到了实现和应用。 YOLOv3,全称为You Only Look Once Version 3,是YOLO系列算法的最新版本。YOLO算法通过将目标检测任务转化为一个回归问题,在一次前向传播过程中直接预测图像中的边界框和类别信息,从而实现了实时目标检测。YOLOv3不仅提供了更高的检测精度,还引入了一些改进策略,例如多尺度检测以及使用不同大小的边界框预测目标。 TensorFlow 2.0是谷歌开发的一款用于构建和训练机器学习模型的深度学习框架。相比于之前的版本,TensorFlow 2.0提供了更加简洁易用的API,并且与Keras紧密集成,使得模型的搭建和训练变得更加方便。此外,TensorFlow 2.0还引入了Eager Execution机制,可以实时监控模型训练过程,加速了迭代的实验和调试。 在TensorFlow 2.0框架中实现YOLOv3算法可以借助于TensorFlow的强大计算能力和高效的神经网络API,方便地构建、训练和调优YOLOv3模型。同时,TensorFlow 2.0支持TensorBoard可视化工具,可以可视化模型结构和训练过程,便于理解和分析模型性能。此外,TensorFlow 2.0还提供了一系列丰富的工具和函数,例如数据增强、模型评估等,用于优化和完善YOLOv3算法的实现。 总之,YOLOv3算法的TensorFlow 2.0实现可以提供一个高效、简洁、易用的目标检测框架,帮助研究者和开发者更好地应用和推广YOLOv3算法。
评论 63
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值