PU轴承数据集分析

  • 参考:
    • https://zhuanlan.zhihu.com/p/690283185
    • https://zhuanlan.zhihu.com/p/667483984
    • https://blog.csdn.net/ynn4818172/article/details/122755894
    • 数据官方网址:https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter/data-sets-and-download
    • 官方数据集中的pdf描述
  • 注意
    • 表格是手动整理的,其中可能出现错误或表述不准确,以官方数据集中的PDF描述为主
    • 损伤描述的详细信息,请参考以官方数据集中的PDF

表格下载
https://pan.baidu.com/s/1Q8277Ay84n9Kr-Lx4Xpgsg?pwd=1111
提取码: 1111

1.整体情况分析

在这里插入图片描述

2. 故障轴承分析

在这里插入图片描述

### PU轴承数据集在Matlab中的使用 对于PU轴承数据集,在Matlab环境中进行读取和初步分析的过程可以分为几个部分来理解。通常情况下,这类数据集会包含时间序列振动信号或其他传感器采集到的信息。 #### 数据获取 为了获得PU轴承的相关数据集,建议访问公开数据库如NASA的 prognostics data repository 或者其他学术机构发布的机械部件健康监测数据集合[^1]。这些资源提供了多种类型的旋转设备故障模拟实验记录,其中包括不同工况下的滚动轴承性能退化历程。 #### 文件导入 假设已经下载了一个CSV格式保存的时间序列文件,则可以通过以下方式将其加载至MATLAB工作区: ```matlab % 设置路径指向存储有目标csv文件的位置 dataPath = 'path_to_your_file'; filename = fullfile(dataPath, 'bearingData.csv'); % 利用readtable函数读入表格形式的数据 dataTable = readtable(filename); % 显示前几行查看结构 head(dataTable); ``` 上述代码片段展示了如何指定本地磁盘上的具体位置并通过`readtable()`命令把外部表格型资料引入内部变量中以便后续处理。 #### 基础统计与可视化 一旦成功载入所需样本之后就可以着手开展简单的探索性数据分析了。下面给出一段用于计算描述统计数据并绘制趋势图的例子: ```matlab % 计算均值、标准差等基本度量指标 summaryStats = varfun(@mean, dataTable(:, 2:end)); disp(summaryStats); % 绘制某列特征随时间变化曲线 figure; plot(dataTable.Time, dataTable.VariableOfInterest); % 将VariableOfInterest替换为实际感兴趣的字段名 title('Time Series Plot of Bearing Vibration'); xlabel('Time (s)'); ylabel('Amplitude'); grid on; ``` 这段脚本先是对除首列外的所有数值属性求平均值得出汇总信息;接着选取特定的一维数组制作折线图表以直观展现该维度在整个观测期内的变化规律。 #### 高级特性提取 针对更深入的研究需求,还可以考虑应用频域变换技术挖掘潜在模式或是构建预测模型评估剩余使用寿命等问题。这往往涉及到更为复杂的算法实现以及额外的专业领域知识支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值