题目
给定一个常数 K K K 以及一个单链表 L L L,请编写程序将 L L L 中每 K K K 个结点反转。例如:给定 L L L 为 1 → \rightarrow → 2 → \rightarrow → 3 → \rightarrow → 4 → \rightarrow → 5 → \rightarrow → 6, K K K 为 3 3 3,则输出应该为 3 → \rightarrow → 2 → \rightarrow → 1 → \rightarrow → 6 → \rightarrow → 5 → \rightarrow → 4;如果 K K K 为 4,则输出应该为 4 → \rightarrow → 3 → \rightarrow → 2 → \rightarrow → 1 → \rightarrow → 5 → \rightarrow → 6,即最后不到 K K K 个元素不反转。
输入格式
每个输入包含 1 个测试用例。每个测试用例第 1 行给出第 1 个结点的地址、结点总个数正整数 N ( ≤ 10 5 ) N(\le10^5) N(≤105)、以及正整数 K ( ≤ N ) K(\le N) K(≤N),即要求反转的子链结点的个数。结点的地址是 5 位非负整数,NULL 地址用 −1 表示。接下来有 N 行,每行格式为:
Address Data Next
其中 Address
是结点地址,Data
是该结点保存的整数数据,Next
是下一结点的地址。
输出格式
对每个测试用例,顺序输出反转后的链表,其上每个结点占一行,格式与输入相同。
输入样例
00100 6 4
00000 4 99999
00100 1 12309
68237 6 -1
33218 3 00000
99999 5 68237
12309 2 33218
输出样例
00000 4 33218
33218 3 12309
12309 2 00100
00100 1 99999
99999 5 68237
68237 6 -1
题目分析
- 题目考察链表反转,采用单链表更方便;
- 仔细分析题目,结点的地址是 5 位非负整数,而结点总个数正整数 N ( ≤ 10 5 ) N(\le10^5) N(≤105),我们给每个结点编号,并且编号从 0 开始,那么编号的范围在 [ 0 , 99999 ] [0, 99999] [0,99999],刚好对应 1 0 5 10^5 105维的数组,因此可采用静态链表,这样做就无需建立链表的过程。
- 采用静态链表还有一个原因,题目输入数组是无序的,要建立链表,就必须将输入数据存放到数组,而静态链表正是通过数组实现,这应该就是出题人意图所在。
算法分析
首先需要遍历一遍整数链表,时间复杂度为 n n n,同时每遍历 k k k个结点,又要循环 k k k次实现反转,因此整个时间复杂度为 O ( n × k ) O(n\times k) O(n×k);空间复杂度为 O ( n ) O(n) O(n)。
代码
#include <iostream>
#include <stdio.h>
using namespace std;
const int MaxSize = 100000;
struct Node{
int data;
int next;
};
void Reverse(Node *node, int &head, int k){
int count = 0, l, r;
int root = -1;
int p = head;
while(p != -1){
int tmp = node[p].next;
count++;
if(count == 1)
l = p;
if(count == k){
int pre = -1, cur = -1, next = l;
while(count){
if(cur == -1){
cur = next;
next = node[next].next;
}
else{
pre = cur;
cur = next;
next = node[next].next; //反转链表
node[cur].next = pre;
}
count--;
}
node[l].next = tmp;
if(root == -1)
head = p;
else
node[root].next = p;
root = l;
}
p = tmp;
}
}
int main(){
int head, n, k;
int addr1, data, addr2;
Node node[MaxSize];
scanf("%d%d%d", &head, &n, &k);
for(int i=0; i<n; i++){
scanf("%d%d%d", &addr1, &data, &addr2);
node[addr1].data = data;
node[addr1].next = addr2;
}
Reverse(node, head, k);
int p = head;
while(p != -1){
if(node[p].next == -1)
printf("%05d %d %d\n", p, node[p].data, node[p].next);
else
printf("%05d %d %05d\n", p, node[p].data, node[p].next);
p = node[p].next;
}
return 0;
}