1025 反转链表 (25 分)

题目

给定一个常数 K K K 以及一个单链表 L L L,请编写程序将 L L L 中每 K K K 个结点反转。例如:给定 L L L 为 1 → \rightarrow 2 → \rightarrow 3 → \rightarrow 4 → \rightarrow 5 → \rightarrow 6, K K K 3 3 3,则输出应该为 3 → \rightarrow 2 → \rightarrow 1 → \rightarrow 6 → \rightarrow 5 → \rightarrow 4;如果 K K K 为 4,则输出应该为 4 → \rightarrow 3 → \rightarrow 2 → \rightarrow 1 → \rightarrow 5 → \rightarrow 6,即最后不到 K K K 个元素不反转。

输入格式

每个输入包含 1 个测试用例。每个测试用例第 1 行给出第 1 个结点的地址、结点总个数正整数 N ( ≤ 10 ​ 5 ) N(\le10​^5) N(105)、以及正整数 K ( ≤ N ) K(\le N) K(N),即要求反转的子链结点的个数。结点的地址是 5 位非负整数,NULL 地址用 −1 表示。接下来有 N 行,每行格式为:

Address Data Next

其中 Address 是结点地址,Data 是该结点保存的整数数据,Next 是下一结点的地址。

输出格式

对每个测试用例,顺序输出反转后的链表,其上每个结点占一行,格式与输入相同。

输入样例

00100 6 4
00000 4 99999
00100 1 12309
68237 6 -1
33218 3 00000
99999 5 68237
12309 2 33218

输出样例

00000 4 33218
33218 3 12309
12309 2 00100
00100 1 99999
99999 5 68237
68237 6 -1

题目分析
  1. 题目考察链表反转,采用单链表更方便;
  2. 仔细分析题目,结点的地址是 5 位非负整数,而结点总个数正整数 N ( ≤ 10 ​ 5 ) N(\le10​^5) N(105),我们给每个结点编号,并且编号从 0 开始,那么编号的范围在 [ 0 , 99999 ] [0, 99999] [0,99999],刚好对应 1 0 5 10^5 105维的数组,因此可采用静态链表,这样做就无需建立链表的过程。
  3. 采用静态链表还有一个原因,题目输入数组是无序的,要建立链表,就必须将输入数据存放到数组,而静态链表正是通过数组实现,这应该就是出题人意图所在。
算法分析

首先需要遍历一遍整数链表,时间复杂度为 n n n,同时每遍历 k k k个结点,又要循环 k k k次实现反转,因此整个时间复杂度为 O ( n × k ) O(n\times k) O(n×k);空间复杂度为 O ( n ) O(n) O(n)

代码
#include <iostream>
#include <stdio.h>
using namespace std;

const int MaxSize = 100000;

struct Node{
    int data;
    int next;
};

void Reverse(Node *node, int &head, int k){
    int count = 0, l, r;
    int root = -1;
    int p = head;
    while(p != -1){
        int tmp = node[p].next;
        count++;
        if(count == 1)
            l = p;
        if(count == k){
            int pre = -1, cur = -1, next = l;
            while(count){
                if(cur == -1){
                    cur = next;
                    next = node[next].next;
                }
                else{
                    pre = cur;
                    cur = next;
                    next = node[next].next; //反转链表
                    node[cur].next = pre;
                }
                count--;
            }
            node[l].next = tmp;
            if(root == -1)
                head = p;
            else
                node[root].next = p;
            root = l;
        }
        p = tmp;
    }
}

int main(){
    int head, n, k;
    int addr1, data, addr2;
    Node node[MaxSize];
    scanf("%d%d%d", &head, &n, &k);
    for(int i=0; i<n; i++){
        scanf("%d%d%d", &addr1, &data, &addr2);
        node[addr1].data = data;
        node[addr1].next = addr2;
    }
    Reverse(node, head, k);
    int p = head;
    while(p != -1){
        if(node[p].next == -1)
            printf("%05d %d %d\n", p, node[p].data, node[p].next);
        else
            printf("%05d %d %05d\n", p, node[p].data, node[p].next);
        p = node[p].next;
    }
    return 0;
}

提交结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值