题意:
n个点,m条边,点分为两种,一种为空房间,一种为怪兽房间。进入空房间可以拿到一个糖果,重复进入不重复计数。进入怪兽房子不能出去,但有一次机会可以随机达到一个怪兽房间相邻的房间。询问最多可以找到多少糖果。除怪兽房间出去的边是随机的,别的都是自己选的。
样例1就是上面橙色框加起来,选3那边的话是
1
+
1
2
∗
1
1+\frac{1}{2}*1
1+21∗1小于选左边的2
思路:
很容易发现,有怪兽的房间只有在作为割点的时候才会有效果,如果有一块空房间相互可达,那么这肯定可以一下子拿走这个联通块的所有糖果,那么就可以先把联通的空房间缩点,那些不作为割点的怪兽房间全部不要了,这样子最后的图是个树。具体怎么缩呢?一开始不加入任何的怪兽房间,这时候是由空房间组成的森林,用并查集处理一下。然后再加入那些怪兽房间,具体的情况讨论下。重边可以直接去重,用边权来表示一条边的数量。最后在新的图中搞下树形dp,其实也不算dp,因为只有一次机会,最多跑三层,讨论一下就可以了。
参考代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,m,k;
int ct;
struct _edge1{
int u,v,w;
}edge1[N<<1];
bool flag[N];//是否为怪兽房间
int fa[N],sz[N];//连通块编号和大小
int idx[N];//缩点后的节点编号
bool hs[N];//用于缩点的vis标记
inline int findfa(int x){
return fa[x]=(fa[x]==x?x:findfa(fa[x]));
}
int tot[N];//一个节点总共有多少条边
int pre[N];//映射缩点后编号->原编号
int head[N],cnt;
int did;//用于判断是否为怪兽房子 x<=did为空房间
void init(){
for(int i=1;i<=n;i++){
fa[i]=i;
flag[i]=false;
sz[i]=1;
hs[i]=false;
tot[i]=0;
pre[i]=0;
head[i]=-1;
}
}
struct _edge{
int v,w,nxt;
}edge[N<<1];
void add_edge(int u,int v,int w){
edge[++cnt].v=v;
edge[cnt].w=w;
edge[cnt].nxt=head[u];
head[u]=cnt;
}
double dfs(int u,int f,int dep){
if(dep>=3){
if(u<=did){
return 1.0*sz[pre[u]];
}
else{
return 0;
}
// printf("fa:%d sz:%d*\n",findfa(u),sz[findfa(u)]);
}
double tmp=0;
for(int i=head[u];~i;i=edge[i].nxt){
int v=edge[i].v;
int w=edge[i].w;
if(v==f)continue;
double tp=dfs(v,u,dep+1);
if(dep==1){
tmp=max(tmp,tp);
}
else if(dep==2){
if(v<=did)tmp+=1.0*w/tot[u]*tp;
}
}
if(dep==1){
return 1.0*sz[pre[u]]+tmp;
}
else if(dep==2){
return tmp;
}
return 0;
}
map<pair<int,int>,int>mp;
template <typename _Tp> inline _Tp read(_Tp&x){
char c11=getchar(),ob=0;x=0;
while(c11^'-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=1;
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
}
int main(){
int t;
read(t);
for(int ca=1;ca<=t;ca++){
mp.clear();
read(n),read(m),read(k);
init();
ct=0;
for(int i=1,u,v;i<=m;i++){
read(u),read(v);
if(u>v)swap(u,v);
if(mp.count(make_pair(u,v))){
edge1[mp[make_pair(u,v)]].w++;
}
else{
edge1[++ct].u=u;
edge1[ct].v=v;
edge1[ct].w=1;
mp[make_pair(u,v)]=ct;
}
}
for(int i=1,x;i<=k;i++){
read(x);
flag[x]= true;
}
for(int i=1;i<=ct;i++){
if(flag[edge1[i].u]||flag[edge1[i].v])continue;
int fau=findfa(edge1[i].u);
int fav=findfa(edge1[i].v);
if(fau!=fav){
sz[fau]+=sz[fav];
fa[fav]=fau;
}
}
int top=0;
for(int i=1;i<=n;i++){
if(fa[i]==i&&!flag[i]){
idx[i]=++top;
pre[top]=i;
}
}
did=top;
cnt=0;
for(int i=1;i<=ct;i++){
int u=edge1[i].u;
int v=edge1[i].v;
int w=edge1[i].w;
int nu=0,nv=0;
if(flag[u]){
if(!hs[u]){
hs[u]=true;
idx[u]=++top;
}
nu=idx[u];
}
if(flag[v]){
if(!hs[v]){
hs[v]=true;
idx[v]=++top;
}
nv=idx[v];
}
if(flag[u]&&flag[v]){
tot[nu]+=w;
tot[nv]+=w;
add_edge(nu,nv,w);
add_edge(nv,nu,w);
}
else if(flag[u]){
int fav=findfa(v);
v=idx[fav];
add_edge(nu,v,w);
add_edge(v,nu,w);
tot[nu]+=w;
tot[v]+=w;
}
else if(flag[v]){
int fau=findfa(u);
u=idx[fau];
add_edge(u,nv,w);
add_edge(nv,u,w);
tot[u]+=w;
tot[nv]+=w;
}
}
printf("%.7f\n",dfs(idx[findfa(1)],0,1));
}
return 0;
}
/*
100
8 13 5
1 3
1 2
3 4
4 5
5 2
2 6
1 7
3 8
4 8
5 7
6 7
7 8
6 8
6 7 8 2 3
ans:1.666667
*/