2019 icpc沈阳网络赛 B Dudu's maze(并查集+树形dp)

链接

题意:

n个点,m条边,点分为两种,一种为空房间,一种为怪兽房间。进入空房间可以拿到一个糖果,重复进入不重复计数。进入怪兽房子不能出去,但有一次机会可以随机达到一个怪兽房间相邻的房间。询问最多可以找到多少糖果。除怪兽房间出去的边是随机的,别的都是自己选的。
在这里插入图片描述
样例1就是上面橙色框加起来,选3那边的话是 1 + 1 2 ∗ 1 1+\frac{1}{2}*1 1+211小于选左边的2


思路:

很容易发现,有怪兽的房间只有在作为割点的时候才会有效果,如果有一块空房间相互可达,那么这肯定可以一下子拿走这个联通块的所有糖果,那么就可以先把联通的空房间缩点,那些不作为割点的怪兽房间全部不要了,这样子最后的图是个树。具体怎么缩呢?一开始不加入任何的怪兽房间,这时候是由空房间组成的森林,用并查集处理一下。然后再加入那些怪兽房间,具体的情况讨论下。重边可以直接去重,用边权来表示一条边的数量。最后在新的图中搞下树形dp,其实也不算dp,因为只有一次机会,最多跑三层,讨论一下就可以了。


参考代码:
#include <bits/stdc++.h>
using namespace std;

const int N=1e5+5;
int n,m,k;
int ct;
struct _edge1{
    int u,v,w;
}edge1[N<<1];
bool flag[N];//是否为怪兽房间
int fa[N],sz[N];//连通块编号和大小
int idx[N];//缩点后的节点编号
bool hs[N];//用于缩点的vis标记
inline int findfa(int x){
    return fa[x]=(fa[x]==x?x:findfa(fa[x]));
}
int tot[N];//一个节点总共有多少条边
int pre[N];//映射缩点后编号->原编号
int head[N],cnt;
int did;//用于判断是否为怪兽房子 x<=did为空房间
void init(){
    for(int i=1;i<=n;i++){
        fa[i]=i;
        flag[i]=false;
        sz[i]=1;
        hs[i]=false;
        tot[i]=0;
        pre[i]=0;
        head[i]=-1;
    }
}
struct _edge{
    int v,w,nxt;
}edge[N<<1];

void add_edge(int u,int v,int w){
    edge[++cnt].v=v;
    edge[cnt].w=w;
    edge[cnt].nxt=head[u];
    head[u]=cnt;
}

double dfs(int u,int f,int dep){
    if(dep>=3){
        if(u<=did){
            return 1.0*sz[pre[u]];
        }
        else{
            return 0;
        }
//        printf("fa:%d sz:%d*\n",findfa(u),sz[findfa(u)]);

    }
    double tmp=0;
    for(int i=head[u];~i;i=edge[i].nxt){
        int v=edge[i].v;
        int w=edge[i].w;
        if(v==f)continue;
        double tp=dfs(v,u,dep+1);
        if(dep==1){
            tmp=max(tmp,tp);
        }
        else if(dep==2){
            if(v<=did)tmp+=1.0*w/tot[u]*tp;
        }
    }
    if(dep==1){
        return 1.0*sz[pre[u]]+tmp;
    }
    else if(dep==2){
        return tmp;
    }
    return 0;
}

map<pair<int,int>,int>mp;

template <typename _Tp> inline _Tp read(_Tp&x){
    char c11=getchar(),ob=0;x=0;
    while(c11^'-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=1;
    while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
}

int main(){
    int t;
    read(t);
    for(int ca=1;ca<=t;ca++){
        mp.clear();
        read(n),read(m),read(k);
        init();
        ct=0;
        for(int i=1,u,v;i<=m;i++){
            read(u),read(v);
            if(u>v)swap(u,v);
            if(mp.count(make_pair(u,v))){
                edge1[mp[make_pair(u,v)]].w++;
            }
            else{
                edge1[++ct].u=u;
                edge1[ct].v=v;
                edge1[ct].w=1;
                mp[make_pair(u,v)]=ct;
            }
        }
        for(int i=1,x;i<=k;i++){
            read(x);
            flag[x]= true;
        }
        for(int i=1;i<=ct;i++){
            if(flag[edge1[i].u]||flag[edge1[i].v])continue;
            int fau=findfa(edge1[i].u);
            int fav=findfa(edge1[i].v);
            if(fau!=fav){
                sz[fau]+=sz[fav];
                fa[fav]=fau;
            }
        }
        int top=0;
        for(int i=1;i<=n;i++){
            if(fa[i]==i&&!flag[i]){
                idx[i]=++top;
                pre[top]=i;
            }
        }
        did=top;
        cnt=0;
        for(int i=1;i<=ct;i++){
            int u=edge1[i].u;
            int v=edge1[i].v;
            int w=edge1[i].w;
            int nu=0,nv=0;
            if(flag[u]){
                if(!hs[u]){
                    hs[u]=true;
                    idx[u]=++top;
                }
                nu=idx[u];
            }
            if(flag[v]){
                if(!hs[v]){
                    hs[v]=true;
                    idx[v]=++top;
                }
                nv=idx[v];
            }

            if(flag[u]&&flag[v]){
                tot[nu]+=w;
                tot[nv]+=w;
                add_edge(nu,nv,w);
                add_edge(nv,nu,w);
            }
            else if(flag[u]){
                int fav=findfa(v);
                v=idx[fav];
                add_edge(nu,v,w);
                add_edge(v,nu,w);
                tot[nu]+=w;
                tot[v]+=w;
            }
            else if(flag[v]){
                int fau=findfa(u);
                u=idx[fau];
                add_edge(u,nv,w);
                add_edge(nv,u,w);
                tot[u]+=w;
                tot[nv]+=w;
            }
        }
        printf("%.7f\n",dfs(idx[findfa(1)],0,1));
    }
    return 0;
}

/*
100
8 13 5
1 3
1 2
3 4
4 5
5 2
2 6
1 7
3 8
4 8
5 7
6 7
7 8
6 8
6 7 8 2 3

ans:1.666667
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值