杜教筛模板题

链接

一般求法:

∑ i = 1 n f ( x ) \sum_{i=1}^{n}{f(x)} i=1nf(x)

找出两个积性函数 h ( x ) h(x) h(x) g ( x ) g(x) g(x),满足 g ( x ) = h ( x ) ∗ f ( x ) g(x)=h(x)*f(x) g(x)=h(x)f(x),(*表示卷积)

然后有 ∑ i = 1 n g ( x ) = ∑ i = 1 n ∑ d ∣ i h ( d ) ⋅ f ( n d ) \sum_{i=1}^{n}g(x)=\sum_{i=1}^{n}\sum_{d|i}h(d)\cdot f(\frac{n}{d}) i=1ng(x)=i=1ndih(d)f(dn)

∑ i = 1 n g ( x ) = ∑ d = 1 n h ( d ) ⋅ ∑ j = 1 ⌊ n d ⌋ f ( j ) \sum_{i=1}^{n}g(x)=\sum_{d=1}^{n}h(d)\cdot\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}f({j}) i=1ng(x)=d=1nh(d)j=1dnf(j)

s ( x ) = ∑ i = 1 x f ( x ) s(x)=\sum_{i=1}^{x}f(x) s(x)=i=1xf(x)

∑ i = 1 n g ( x ) = ∑ d = 1 n h ( d ) ⋅ s ( ⌊ n d ⌋ ) ) \sum_{i=1}^{n}g(x)=\sum_{d=1}^{n}h(d)\cdot s(\lfloor\frac{n}{d}\rfloor)) i=1ng(x)=d=1nh(d)s(dn))

右边提取第一项 h ( 1 ) ∗ s ( 1 ) h(1)*s(1) h(1)s(1),把剩余的移到左边等式变为:

h ( 1 ) ∗ s ( n ) = ∑ i = 1 n g ( x ) − ∑ d = 2 n h ( d ) ⋅ s ( ⌊ n d ⌋ ) ) h(1)*s(n) =\sum_{i=1}^{n}g(x) -\sum_{d=2}^{n}h(d)\cdot s(\lfloor\frac{n}{d}\rfloor)) h(1)s(n)=i=1ng(x)d=2nh(d)s(dn))

通常 ∑ i = 1 n g ( x ) \sum_{i=1}^{n}g(x) i=1ng(x) h ( 1 ) h(1) h(1)很容易快速得到,所以只要解决 ∑ d = 2 n h ( d ) ⋅ s ( ⌊ n d ⌋ ) ) \sum_{d=2}^{n}h(d)\cdot s(\lfloor\frac{n}{d}\rfloor)) d=2nh(d)s(dn))这部分就可以得到 s ( n ) s(n) s(n)
这部分可以使用分块快速得到

一般是先对可打表的范围预处理,然后求解的时候如果n较小,直接输出答案即可;n较大时采用递归求解的方式来解决。需要保存那些不在打表范围的结果,也就是记忆化。

模板题中:
∑ i = 1 n ϕ ( i ) \sum_{i=1}^{n}\phi(i) i=1nϕ(i)
容易想到 ϕ ∗ I = i d \phi*I=id ϕI=id,其中 I ( x ) = 1 , i d ( x ) = x I(x)=1,id(x)=x I(x)=1,id(x)=x

∑ i = 1 n μ ( i ) \sum_{i=1}^{n}\mu(i) i=1nμ(i)
容易想到 μ ∗ I = e \mu*I=e μI=e,其中 I ( x ) = 1 , e ( x ) = ( x = 1 ? 1 : 0 ) I(x)=1,e(x)=(x=1?1:0) I(x)=1,e(x)=(x=1?1:0)

后面照着过程一步一步下来很容易可以解出


常用数论函数:
函数
d ( n ) = ∑ d ∥ n 1 d(n)=\sum_{d\|n}1 d(n)=dn1因数个数
σ ( n ) = ∑ d ∥ n d \sigma(n)=\sum_{d\|n}d σ(n)=dnd因数和
e ( n ) = n = = 1 ? 1 : 0 e(n)=n==1?1:0 e(n)=n==1?1:0幺元函数
I ( n ) = 1 I(n)=1 I(n)=1恒等函数
ϕ ( n ) \phi(n) ϕ(n)欧拉函数
μ ( n ) \mu(n) μ(n)莫比乌斯函数
i d ( n ) = n id(n)=n id(n)=n单位函数
i d k ( n ) = n k idk(n)=n^{k} idk(n)=nk幂函数

μ ∗ 1 = ϵ \mu * 1=\epsilon μ1=ϵ
ϕ ∗ 1 = I d \phi * 1=Id ϕ1=Id
ϕ = I d ∗ μ \phi = Id * \mu ϕ=Idμ
d = 1 ∗ 1 d=1∗1 d=11
1 = μ ∗ d 1 = \mu * d 1=μd

参考:
#include <bits/stdc++.h>
#include <unordered_map>
using namespace std;
typedef long long ll;
const int N=5e6+5;
const int M=5e6;
int mu[N];
ll phi[N];
bool vis[N];
int prime[N],tot;

void work_pre(int maxn)
{
    phi[1]=mu[1]=1;
    for(int i=2;i<=maxn;i++)
    {
        if(!vis[i])
        {
            prime[++tot]=i;
            mu[i]=-1;phi[i]=i-1;
        }
        for(int j=1;j<=tot&&prime[j]*i<=maxn;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else mu[i*prime[j]]=-mu[i],phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
    for(int i=1;i<=maxn;i++){
        phi[i]+=phi[i-1];
        mu[i]+=mu[i-1];
    }
}


unordered_map<int,int>mp1;
unordered_map<int,ll>mp2;

int djs_mu(int n){
    if(n<=M){
        return mu[n];
    }
    if(mp1[n]){
        return mp1[n];
    }
    int ret=1;
    for(int l=2,r;n>=l;l=r+1){
        r=n/(n/l);
        ret-=(r-l+1)*djs_mu(n/l);
    }
    return mp1[n]=ret;
}

ll djs_phi(int n){
    if(n<=M){
        return phi[n];
    }
    if(mp2[n]){
        return mp2[n];
    }
    ll ret=1ll*n*(n+1)/2;
    for(int l=2,r;n>=l;l=r+1){
        r=n/(n/l);
        ret-=1ll*(r-l+1)*djs_phi(n/l);
    }
    return mp2[n]=ret;
}


int main(){
    work_pre(M);
    int t;
    scanf("%d",&t);
    for(int i=1;i<=t;i++){
        int n;
        scanf("%d",&n);
        printf("%lld %d\n",djs_phi(n),djs_mu(n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值