anaconda 下打开 tensorboard

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

#定义层,add_layer(输入数据,输入数据维数,输出数据维数,激励函数)
def add_layer(inputs,in_size,out_size,activate_function=None):
    with tf.name_scope('layer'):  #层名称
        with tf.name_scope('weights'):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
        with tf.name_scope('biases'):
            bias = tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.add(tf.matmul(inputs,Weights),bias)
        if activate_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activate_function(Wx_plus_b)
        return outputs

#自定义数据集, [:,np.newaxis]可以生成shape=(300,1)的张量;[np.newaxis:,]可以生成shape=(1,300)的张量
x_data = np.linspace(-1,1,300)[:,np.newaxis]  
noise = np.random.normal(0,0.05,x_data.shape) #噪声
y_data = np.square(x_data) - 0.5 + noise

with tf.name_scope('inputs'):   #可视化图输入名称
    xs = tf.placeholder(tf.float32,[None,1],name='x_input')
    ys = tf.placeholder(tf.float32,[None,1],name='y_input')

#添加隐藏层
l1 = add_layer(xs,1,10,activate_function=tf.nn.relu)
#添加输出层
prediction = add_layer(l1,10,1,activate_function = None)

#reduction_indices=[1]将其维数降到一维,即将其相加求和
with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

#初始化变量variable
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

writer = tf.summary.FileWriter('logs/',sess.graph)   #mac环境下,logs路径为Users/用户名/logs

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()  
plt.show()

for i in range(1000):
    sess.run(train_step,feed_dict = {xs:x_data,ys:y_data})
    if i%50 == 0:
        #print(sess.run(loss,feed_dict = {xs:x_data,ys:y_data}))
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        prediction_value = sess.run(prediction,feed_dict={xs:x_data})
        lines = ax.plot(x_data,prediction_value,'r-',lw=5)
        plt.pause(0.1)

运行上述代码后,打开终端,进入logs所在文件夹(要找对logs文件夹位置,比如楼主的路径是Users/caoxionggang/logs),然后输入命令

tensorboard --logdir='logs'

在这里插入图片描述
复制出现的http://0.0.0.0:6006到浏览器,打开选择Graphs,便可看见tesnsorflow图。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值