Python轴承故障诊断 (三)经验模态分解EMD

目录

前言

1 经验模态分解EMD原理介绍

1.1 EMD概述

1.2 本征模态函数IMF

1.3 EMD 分解的基本假设

2 EMD分解的基本原理和步骤

对于原始信号 X(t)

第一步,极值点提取:

第二步,构建上下包络线:

第三步,提取均值函数:

第四步,迭代分解:

第五步,确定本征模态函数(IMF):

第六步,重构信号:

3 基于Python的EMD实现

2.1 代码示例

2.2 轴承故障数据的分解

2.2.1 凯斯西储大学轴承数据的加载

2.2.2 滚珠故障信号EMD分解

2.3 信号分量的处理


 往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断 (一)短时傅里叶变换STFT

Python轴承故障诊断 (二)连续小波变换CWT_pyts 小波变换 故障-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD_轴承诊断 pytorch-CSDN博客

Pytorch-LSTM轴承故障一维信号分类(一)_cwru数据集pytorch训练-CSDN博客

Pytorch-CNN轴承故障一维信号分类(二)-CSDN博客

Pytorch-Transformer轴承故障一维信号分类(三)-CSDN博客

Python轴承故障诊断 (四)基于EMD-CNN的故障分类-CSDN博客

Python轴承故障诊断 (五)基于EMD-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (六)基于EMD-Transformer的故障分类-CSDN博客

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类-CSDN博客

Python轴承故障诊断 (八)基于EMD-CNN-GRU并行模型的故障分类-CSDN博客

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

大甩卖-(CWRU)轴承故障诊数据集和代码全家桶-CSDN博客

Python轴承故障诊断 (九)基于VMD+CNN-BiLSTM的故障分类-CSDN博客

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN -BiLSTM-CrossAttention轴承故障识别模型-CSDN博客

交叉注意力融合时域、频域特征的FFT + CNN-Transformer-CrossAttention轴承故障识别模型-CSDN博客

轴承故障诊断 (12)基于交叉注意力特征融合的VMD+CNN-BiLSTM-CrossAttention故障识别模型-CSDN博客

Python轴承故障诊断入门教学-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行经验模态分解的介绍与参数选择,最后通过Python实现对故障数据的EMD分解。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

关于安装EMD包的问题,pip install EMD-signal命令就可以安装好PyEMD,然后from PyEMD import EMD ,EEMD导入。

1 经验模态分解EMD原理介绍

1.1 EMD概述

经验模态分解(Empirical Mode Decomposition,EMD)方法是一种自适应信号时频处理方法,特别适用于非线性、非平稳信号的分析处理[1]。其本质是一种对信号进行分解的方法,将信号分解为各个相互独立的成分的叠加,依据数据自身的时间尺度特征来进行信号分解,具备自适应性。EMD的优点在于它是一种自适应的、数据驱动的分解方法,不需要预先假设信号的分布或结构。这使得它适用于处理各种类型的信号,包括非线性和非平稳信号。

EMD 认为任何一个复杂序列都是由多个单频率信号叠加而成,因此可以分解成若干个 本征模态函数(Intrinsic Mode Functions, IMF),IMF 的各个分量即代表了原始信号中的各频 率分量,并按照从高频到低频的顺序依次排列,这也是 IMF 的物理含义[2]。

1.2 本征模态函数IMF

本征模态函数(Intrinsic Mode Functions, IMF)就是原始信号被 EMD 分解之后得到的各层信号分量。任何信号都可以拆分成若干个 IMF 之和。IMF 有两个假设条件:

  • 在整个数据段内,极值点的个数和过零点的个数必须相等或相差最多不能超过一 个;

  • 在任意时刻,由局部极大值点形成的上包络线和由局部极小值点形成的下包络线 的平均值为零,即上、下包络线相对于时间轴局部对称。

对于上述的条件理解如下:

第一,图线要反复跨越 x 轴,比如:

反复跨越 x 轴

而不能像下面这样某次穿过零点后出现多个极点:

某次穿过零点后出现多个极点

第二,上下包络线要对称,比如:

上下包络线对称

而不能像如下这样,上下包络线不对称

1.3 EMD 分解的基本假设

  • 信号至少有两个极值点:一个极大值点和一个极小值点;

  • 特征时间尺度由极值之间的时间间隔定义;

  • 如果数据完全没有极值,但只包含拐点,那么可以一次或多次划分来揭示极值点,最终的结果可以通过积分得到

2 EMD分解的基本原理和步骤

EMD的分解过程是一个迭代的过程。首先,对原始信号进行极值点的提取,然后通过连接极值点的均值得到第一轮的近似IMF(也叫做“本征模态1”)。接下来,将这个近似IMF从原始信号中减去,得到一个新的信号,然后对这个新信号再次进行极值点提取和均值连接,得到第二轮的近似IMF。如此往复,直到得到的近似IMF满足某种停止准则。

对于原始信号 X(t)

第一步,极值点提取:

从待分解的信号中识别局部极值点,包括局部极大值和局部极小值。极值点是信号中的局部特征,能够帮助刻画信号的振荡特性。

第二步,构建上下包络线:

通过连接相邻的局部极大值和局部极小值,构建信号的上包络线和下包络线。上包络线 U(t) 由局部极大值连接而成,下包络线 L(t) 由局部极小值连接而成。包络线用于描述信号的振荡范围。

第三步,提取均值函数:

计算上包络线和下包络线的平均值,得到均值函数 m1。将原始信号减去均值函数,得到一维信号 h1。

m1 = ( U(t) + L(t) ) / 2

h1 = X(t) - m1

第四步,迭代分解:

对减去均值函数后的一维信号 h1,重复步骤1-3的过程,直到得到的剩余信号为“单调信号”,或者满足IMF的两个假设条件。迭代k次的IMF为

hk = h(k-1) - mk

第五步,确定本征模态函数(IMF):

在每一次迭代中,通过极值点提取、构建包络线等步骤,得到的剩余信号被称为一个本征模态函数(IMF)。IMF具有局部特征,并且代表了信号在不同尺度上的振荡模式。使用上述方法得到的第一个IMF记为c1, 然后将c1从原始信号中分离,得到

r1 = X(t) - c1

由于r1仍然包含大量信息,因此将r1作为新的原始信号,再通过步骤1-4的分析,可以得到IMF2,以此类推,得到

r1 - c2 = r2,... ..., r(n-1) -cn = rn

当cn或rn小于某一设定值,或者得到的剩余信号为“单调信号”,无法提取更多的IMF时,迭代终止,得到最终的分解结果为:

第六步,重构信号:

将得到的IMF函数进行逐个提取,直到无法再得到新的IMF为止。最终得到的IMF函数可以被看作是信号在不同时间尺度上的振荡模式,它们的组合可以重构原始信号。

这些基本步骤构成了EMD方法的核心流程,通过这些步骤,EMD可以将复杂的信号分解成不同尺度和频率的本征模态函数,从而揭示信号的局部特征和振荡模式。

3 基于Python的EMD实现

在 Python 中,使用 PyEMD 库来实现经验模态分解(EMD)

2.1 代码示例

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD

# 生成一个示例信号
t = np.linspace(0, 1, 1000)
s = np.sin(11*2*np.pi*t*t) + 6*t*t

# 创建 EMD 对象
emd = EMD()

# 对信号进行经验模态分解
IMFs = emd(s)

# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, s, 'r')
plt.title("Original signal")

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1))

plt.show()

2.2 轴承故障数据的分解

选择 0.021英寸滚珠故障信号数据来做EMD分解

2.2.1 凯斯西储大学轴承数据的加载

第一步,导入包,读取数据


import numpy as np
from scipy.io import loadmat
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 读取MAT文件  
data = loadmat('21_2.mat') # 0.021英寸 滚珠
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验


# DE - drive end accelerometer data 驱动端加速度数据
data_list = data['X222_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
data_list = data_list3[0:1024]
#  进行数据可视化
plt.figure(figsize=(20,10))
plt.plot(data_list)
plt.title("滚珠")
plt.show()

2.2.2 滚珠故障信号EMD分解

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD

t = np.linspace(0, 1, 1024)
data = np.array(data_list)
# 创建 EMD 对象
emd = EMD()

# 对信号进行经验模态分解
IMFs = emd(data)

# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, data, 'r')
plt.title("Original signal", fontsize=10)

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1), fontsize=10)
    # 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.4, wspace=0.2)
plt.show()

2.3 信号分量的处理

通过经验模态分解(EMD)得到了信号的分量,可以进行许多不同的分析和处理操作,以下是一些常见的对分量的利用方向:

(1)信号重构:将分解得到的各个本征模态函数(IMF)相加,可以重构原始信号。这可以用于验证分解的效果,或者用于信号的重建和恢复。

(2)去噪:对于复杂的信号,可能存在噪声或干扰成分。通过分析各个IMF的频率和振幅,可以识别和去除信号中的噪声成分。

(3)频率分析:分析每个IMF的频率成分,可以帮助理解信号在不同频率上的振荡特性,从而揭示信号的频域特征。

(4)特征提取:每个IMF代表了信号的局部特征和振荡模式,可以用于提取信号的特征,并进一步应用于机器学习或模式识别任务中。

(5)信号预测:通过对分解得到的各个IMF进行分析,可以探索信号的未来趋势和发展模式,从而用于信号的预测和预测建模。

(6)模式识别:分析每个IMF的时域和频域特征,可以帮助对信号进行模式识别和分类,用于识别信号中的不同模式和特征。

(7)异常检测:通过分析每个IMF的振幅和频率特征,可以用于探测信号中的异常或突发事件,从而用于异常检测和故障诊断。

在得到了信号的分量之后,可以根据具体的应用需求选择合适的分析和处理方法,以实现对信号的深入理解、特征提取和应用。对于后续的研究,主要利用IMF分类来对故障信号做模式识别,即故障分类。

参考文献

[1] Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. The Royal Society,  1998,454:903-995.

[2]《非平稳数据分解理论  从入门到实践》.蒋锋,杨华.中国财政经济出版社.

  • 30
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征频率计算凯斯西储轴承故障特征

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

建模先锋

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值