本文仅对经验模态分解(EMD)的原理简单介绍和重点介绍模型的应用。
1. EMD原理
经验模态分解(EMD)的原理和算法分析步骤可以参考知乎专栏:https://zhuanlan.zhihu.com/p/40005057
讲的比较细致,容易理解。
2. EMD实战应用
简介
目前的研究方向是时间序列数据预测,采用的数据都是时间序列数据,本次实验的数据集是海浪高度数据信息,没有进行数据的预处理,实验可能会出现一些意想不到的结果,每个人根据自己的研究方向加以修改即可。
2.1 数据集
链接:https://pan.baidu.com/s/1PQtdld221EGu-t2w677uUw
提取码:i9b2
如果无法获取,留言、私聊,发数据集。
2.2 实验
实验代码演示
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 19 15:45:31 2020
@author: 76784
"""
import pandas as pd
import numpy as np
from PyEMD import EMD, Visualisation # 可视化
##载入时间序列数据
data = pd.read_csv(r'46086xiabannian.csv',usecols=[0])
S1 = data.values
S = S1[:,0]
# print(len(S))
t = np.arange(0,len(S),1) # t 表示横轴的取值范围
# Extract imfs and residue
# In case of EMD
emd = EMD()
emd.emd(S)
# 获得分量+残余分量
# 分量的个数
#print(len(imfs))
# 分量可视化
# 频率可视化
# 保存分量+残余分量
# 保存残余分量
dataframe = pd.DataFrame(res)
dataframe.to_csv(r"res.csv",index=False,sep=',')
注意:若提示缺少相关包信息,可直接下载即可
2.3 结果
分量可视化
频率可视化
保存文件的图片信息
3. 总结
首先,确定数据集中的数据形式;
其次,找到相关的代码模型,进行调试;
接着,将你的数据集输入到模型中,进行实验;
最后,根据实验结果进行相关分析。
注意
要代码私信我,会发的。