1.概念:
递归就是方法自己调用自己,每次调用时传入不同的变量.
2.递归调用的机制
- 当程序执行到一个方法时,就会开辟一个独立的空间(栈)
- 每个空间的数据(局部变量),是独立的.
举例:
该方法没递归一次 就会创建一个栈帧,到达递归的出口时候,执行完一个方法就去执行它前面的方法,直到方法都执行完,才退出
3.递归需要遵守的重要规则
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响, 比如n变量
- 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError
- 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。
4.递归的应用实例
4.1迷宫问题
- 小球得到的路径,和设置的找路策略有关即:找路的上下左右的顺序相关
- 在得到小球路径时,可以先使用(下右上左),再改成(上右下左),看路径的变化
- 测试回溯现象
思考: 如何求出最短路径? (分别走不通的方向,计算出各个方向走过的路径长度,选出最小的)
代码实现
public class Maze {
public static void main(String[] args) {
//西安创建二维数组,模拟迷宫
int[][] map=new int [8][7];
//使用1表示墙,
//上下全部为1
for(int i=0;i<7;i++){
map[0][i]=1;
map[7][i]=1;
}
//左右全部为1
for(int i=0;i<8;i++){
map[i][0]=1;
map[i][6]=1;
}
//设置挡板
map[3][1]=1;
map[3][2]=1;
print(map);
//使用回溯给小球找路
System.out.println(setWay2(map,1,1));
print(map);
}
//遍历地图
public static void print(int[][] map){
for (int i = 0; i < 8; i++) {
for (int j = 0; j <7 ; j++) {
System.out.print(map[i][j]+" ");
}
System.out.println();
}
}
//使用回溯给小球找路
/*
1.说明:map表示地图
2.i,j表示从呢个位置开始出发(1,1)
3.如果小球找到map([6][5])的位置说明找到出路‘
4.约定:当map[i][j]为0表示还没有走过,为1表示为墙,为2表示可以走,为3表示走过,但是走不通
5.策略:下-》右-》上-》左,走不通就回溯
*/
/**
* @param map 地图
* @param i 从那个位置开始找
* @param j
* @return 如果找到返回true,找不到返回false
*/
public static boolean setWay(int[][] map,int i,int j){
if(map[6][5]==2){//通路已经找到了
return true;
}else {
if(map[i][j]==0){//如果当前这条路还没有走过
//策略:下,右,上,左
map[i][j]=2;//假设该点 可以走通
if(setWay(map,i+1,j)){//下
return true;
}else if(setWay(map,i,j+1)){//右
return true;
}else if(setWay(map,i-1,j)){//上
return true;
}else if(setWay(map,i,j-1)){//左
return true;
}else {
//说明该点走不通
map[i][j]=3;
return false;
}
}else {//如果map[i][j]!=0,肯是1,2,3
}
return false;
}
}
//策略:上,右,下,左
public static boolean setWay2(int[][] map,int i,int j){
if(map[6][5]==2){//通路已经找到了
return true;
}else {
if(map[i][j]==0){//如果当前这条路还没有走过
//策略:下,右,上,左
map[i][j]=2;//假设该点 可以走通
if(setWay2(map,i-1,j)){//上
return true;
}else if(setWay2(map,i,j+1)){//右
return true;
}else if(setWay2(map,i+1,j)){//下
return true;
}else if(setWay2(map,i,j-1)){//左
return true;
}else {
//说明该点走不通
map[i][j]=3;
return false;
}
}else {//如果map[i][j]!=0,肯是1,2,3
}
return false;
}
}
}
4.2 8皇后问题
该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
说明:理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列
4.2.1思路
- 第一个皇后先放第一行第一列
- 第二个皇后放在第二行第一列、然后判断是否OK[即判断是冲突], 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
- 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
- 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
- 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤
代码实现
public class Queue8 {
//定义一个max表示有几个皇后
int max=8;
//定义数组保存皇后的位置
int[] array=new int[max];
//统计次数
int count=0;
public static void main(String[] args) {
Queue8 queue8=new Queue8();
queue8.check(0);
System.out.println(queue8.count);
}
//放置第n个皇后
//注意:check是每一次递归调用的时,进入到check()中都有for(int i=0;i<max;i++),因此会有回溯
public void check(int n) {
if(n==max) {//n=8, 八个皇后度偶已经放好了
print();
count++;
return;
}
//依次放入皇后,并且判断是否冲突
for (int i = 0; i <max ; i++) {
//先把当前的皇后n,放到该行的第一列
array[n]=i;
//判断 当前放置的第n个皇后放到第i列时是否有冲突
if(judge(n)){//不冲突
//接着放置n+1个皇后,即开始递归
check(n+1);
}
//如果有冲突,就继续执行array[n]=i,即din个皇后,放置在本行后移一个位置
}
}
//查看当前放置的第n个皇后,就去检测该皇后是否和前面百放好的皇后冲突
private boolean judge(int n){
for (int i = 0; i <n ; i++) {
//1.array[i]==array[n]表示第n个皇后是否和前面的n-1个皇后冲突
//Math.abs(n-i)==Math.abs(array[n]-array[i]),表示判断第n个皇后是否和第i个皇后在同一斜线
/*
举例子:
n=1 放在第二列 1 n=1 array[1]=1
Math.abs(1-0)==1 Math.abs(array[n]-array[i])==Math.abs(1-0)=1
*/
if(array[i]==array[n]||Math.abs(n-i)==Math.abs(array[n]-array[i])){
return false;
}
}
return true;
}
//定义一个方法,把皇后的位置打印出来
private void print(){
for (int i = 0; i <array.length ; i++) {
System.out.print(array[i]+" ");
}
System.out.println();
}
}