支持向量机(SVM)

前言

SVM,英文全称为 Support Vector Machine,中文名为支持向量机,由数学家Vapnik等人早在1963年提出。在深度学习兴起之前,SVM一度风光无限,是机器学习近几十年来最为经典的,也是最受欢迎的分类方法之一。
之所以叫支持向量机,因为其核心理念是:支持向量样本会对识别的问题起关键性作用。那什么是支持向量(Support vector)呢?支持向量也就是离分类超平面(Hyper plane)最近的样本点。

线性模型

在这里插入图片描述

数学描述

在这里插入图片描述

SVM的基本型

在这里插入图片描述

非线性模型

在这里插入图片描述

核函数

在这里插入图片描述

原问题和对偶问题

在这里插入图片描述在这里插入图片描述

优化过程

在这里插入图片描述

训练流程

在这里插入图片描述

测试流程

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值