前言
SVM,英文全称为 Support Vector Machine,中文名为支持向量机,由数学家Vapnik等人早在1963年提出。在深度学习兴起之前,SVM一度风光无限,是机器学习近几十年来最为经典的,也是最受欢迎的分类方法之一。
之所以叫支持向量机,因为其核心理念是:支持向量样本会对识别的问题起关键性作用。那什么是支持向量(Support vector)呢?支持向量也就是离分类超平面(Hyper plane)最近的样本点。
线性模型
数学描述
SVM的基本型
非线性模型
核函数
原问题和对偶问题
优化过程
训练流程
测试流程