【实验必备】对AffectNet数据集进行人脸对齐的小Demo

本文提供了一个使用OpenCV实现AffectNet数据集人脸对齐的Demo,详细介绍了数据集、关键点定位,并展示对齐效果。代码简单易懂,适用于深度学习的人脸预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

  本文的代码可实现,输入一张AffectNet数据集的图像,显示并保存其人脸对齐后的图像。代码几乎不用做任何修改,即可跑通。注:代码贴在文末。

一、AffectNet数据集介绍

  已经下载了AffectNet数据集的伙伴们,一定知道下面这幅图。该表头依次为:图像的路径、图像左上角坐标、图像的宽、图像的高、人脸68个关键点的位置、表情类别、效价和唤醒值。需要注意的是:虽然AffectNet数据集中的图像尺寸并不固定,但对于每幅图来说长宽似乎都是一样的。

在这里插入图片描述

二、人脸关键点介绍

  关于人脸68个关键点的具体位置,具体可以参考下图。一般来说,大家普遍利用两个眼睛的中心位置来人脸对齐,即对于左眼来说,就是37-42关键点的横纵坐标平均值;对于右眼来说,就是43-48关键点的横纵坐标平均值。当然,为了方便,你也可以直接将37关键点作为左眼中心,将46关键点作为右眼中心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信小海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值