【保姆级教程】Windows安装CUDA及cuDNN

前言

1. 第一次安装CUDA

在第一次安装CUDA之前,建议大家先看一下目前电脑里都存在哪几个NVIDIA软件,这样即便后续要卸载CUDA,也能区分哪些是本来就存在的,不可卸载,哪些是后来安装的,可以卸载。具体步骤如下:

  • 第一步,在电脑【设置】中搜索【控制面板】并打开。
    在这里插入图片描述
  • 第二步,点击【卸载程序】。
    在这里插入图片描述
  • 第三步,以笔者的电脑来看,下面几个是本来就存在的,那么后续我在装了CUDA之后,如果要卸载的话,这几个就应该保留下来,以防出问题,而其它后续由于安装CUDA而出现在这里的,后续就可以放心卸载。
    在这里插入图片描述

2. 第N次安装CUDA

在电脑的【控制面板】中的【卸载程序】那里保留以下三个软件,然后其它NVIDIA开头的软件可以全部卸载。卸载完之后,就可以安装新的CUDA了。

在这里插入图片描述

一、 CUDA

1. 查询CUDA版本

(1) 查看显卡驱动版本。同时按win和r键,打开运行框,输入nvidia-smi并回车,如下,可以看到笔者的显卡驱动版本为528.02。
在这里插入图片描述

(2) 进入CUDA Toolkit官方文档界面:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html,如下:
在这里插入图片描述

(3) 向下滑,找到如下表格:
在这里插入图片描述

可以看到,我的显卡驱动版本号为528.02,应该是表格里最高的了,因此,CUDA12.0以下的版本应该都可以安装。这里,笔者打算安装CUDA 11.6版本的。

2. 下载CUDA

1.在确定了安装的CUDA版本后,比如上文确定的CUDA 11.6,就可以进入CUDA下载界面:https://developer.nvidia.com/cuda-downloads,在这个界面,点击【CUDA的历史版本】,如下所示:
在这里插入图片描述

(2) 进入到CUDA的历史版本界面后,往下滑,挑一个11.6.X系列的CUDA Toolkit,比如下图的CUDA Toolkit 11.6.0,然后单击左键。在这里插入图片描述

(3) 进入到CUDA Toolkit 11.6下载界面后,依次做出如下选择,并点击【下载】按钮。
在这里插入图片描述

3. 安装CUDA

  • 第一步,双击CUDA安装包。
    在这里插入图片描述

  • 第二步,直接点击【OK】。
    在这里插入图片描述

  • 第三步,点击【同意并继续】。
    在这里插入图片描述

  • 第四步,选择【自定义安装】并点击【下一步】。
    在这里插入图片描述

  • 第五步,由于我的电脑中没有VS,因此我把VS勾掉,并点击【下一步】。这里一定要注意,如果电脑中没有VS,就要把这个勾去掉,否则容易出错
    在这里插入图片描述

  • 第六步,修改【安装位置】,并点击【下一步】。这里,笔者将其安装在了D盘,节省C盘空间。注意,不管安装在哪里,要记得这个位置,因为后面在配置CUDA环境变量时会用到
    在这里插入图片描述

  • 第七步,等待安装。
    在这里插入图片描述

  • 第八步,点击【下一步】。
    在这里插入图片描述

  • 第九步,安装完成,点击【关闭】即可。
    在这里插入图片描述

4. 配置CUDA环境变量

  • 第一步,在电脑【设置】里搜索环境变量,并点击【编辑系统环境变量】。
    在这里插入图片描述
  • 第二步,在【系统属性】中的【高级】下点击【环境变量】。
    在这里插入图片描述
  • 第三步,查看是否存在CUDA的环境变量,如果没有,则添加,添加的内容就是刚才安装CUDA的位置;如果已经存在环境变量,则不用添加。
    在这里插入图片描述

5. 检查CUDA是否安装成功

  • 第一步,同时按win和r键,调出运行框,并输入cmd,如下:
    在这里插入图片描述
  • 第二步,输入nvcc -V,如果是下面这个样子,就说明安装成功了。否则,就说明哪一步肯定出错了,需要重装CUDA。
    在这里插入图片描述

二、 cuDNN

1. cuDNN版本的查询及下载

(1) 进入cuDNN Download界面:https://developer.nvidia.com/rdp/cudnn-download,如下,如果不是下面这个界面,大概率是没有登录,如果没有账号的话,注册一个即可。总之,登录进来后的界面如下,接着我们需要勾选【同意】,然后点【Archived cuDNN Releases】查看历史cuDNN版本。
在这里插入图片描述

(2) 在cuDNN Archive界面下,查找适合CUDA11.6的cuDNN版本,如下,我选择的是cuDNN v.8.5.0版本,然后单击左键下载对应的压缩包即可。
在这里插入图片描述

2. 安装cuDNN

  • 第一步,解压刚才下载的cuDNN压缩包,得到三个文件夹,如下:
    在这里插入图片描述
    在这里插入图片描述

  • 第二步,复制上面红框中的三个文件夹,并粘贴到CUDA的安装目录下,即刚才装CUDA的位置,如下:
    在这里插入图片描述
    在这里插入图片描述

3. 配置cuDNN的环境变量

  • 第一步,在电脑【设置】里搜索环境变量,并点击【编辑系统环境变量】。
    在这里插入图片描述

  • 第二步,在【系统属性】中的【高级】下点击【环境变量】。
    在这里插入图片描述

  • 第三步,在【系统变量】这里双击【Path】
    在这里插入图片描述

  • 第四步,点击【新建】,然后依次添加下面4个环境变量,如果已经存在则不用添加,如果没有存在,就依次添加。注意,这里填的路径与我们装CUDA的路径是一致的
    在这里插入图片描述

4. 检查cuDNN是否安装成功

  • 第一步,同时按win和r键,调出运行框,并输入cmd,如下:
    在这里插入图片描述

  • 第二步,运行【D:\software\cuda11.6.0\extras\demo_suite】路径下的deviceQuery.exe,检查是否出现了PASS,若出现了PASS,则表示deviceQuery.exe运行成功。
    在这里插入图片描述
    在这里插入图片描述

  • 第三步,运行【D:\software\cuda11.6.0\extras\demo_suite】路径下的bandwidthTest.exe,检查是否出现了PASS,若出现了PASS,则表示bandwidthTest.exe运行成功。
    在这里插入图片描述

  • 第四步,如果deviceQuery.exe和bandwidthTest.exe都运行成功,则表示cuDNN安装成功。

三、查询CUDA及cuDNN的版本

如果后续在使用过程中,忘记CUDA和cuDNN的版本,则可以通过下面的方式找到。

1. 查询CUDA的版本

  • 第一步,同时按win和r键,调出运行框,并输入【cmd】,然后点击【确定】,如下所示:
    在这里插入图片描述
  • 第二步,输入【nvcc -V】,即可查到CUDA版本,如下所示,可以看到笔者的CUDA版本为11.6。
    在这里插入图片描述

2. 查询cuDNN的版本

  • 第一步,在安装CUDA的路径那里,参考下图,找到cudnn_version.h文件,然后用记事本打开。
    在这里插入图片描述

  • 第二步,在cudnn_version.h文件中,查找CUDNN_MAJOR,即可找到对应的cuDNN版本,如下,笔者的cuDNN版本应该为8.5.0。注意,有的cuDNN的版本号在cudnn.h文件了,反正大家把cudnn_version.h和cudnn.h这两个文件都试一下就好了
    在这里插入图片描述

至此,本篇博客完美结束!谢谢大家的阅读!强烈建议大家收藏本篇博客,防止下次找不到~

### 如何将CUDA安装Windows系统的D盘上 为了确保CUDA能够顺利安装至D盘并正常工作,需遵循特定的操作流程。当准备安装CUDA时,选择自定义安装选项可以指定安装位置[^1]。 #### 安装前准备工作 确认目标磁盘有足够的空间来容纳CUDA及其相关组件。通常情况下,建议至少预留20GB以上的可用存储空间以保障后续操作顺畅进行。 #### 执行安装过程 启动CUDA安装程序后,会弹出自定义设置界面,在此界面上可以选择具体的安装目录。对于希望把CUDA放置于D盘的情况而言,则应手动更改默认路径为`D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.X`(其中vX.X代表具体版本号)。 完成上述配置之后继续按照提示逐步推进直至结束整个安装流程即可成功地将CUDA部署到非系统分区之中。 #### 验证环境变量配置 安装完成后还需要验证环境变量是否已正确指向新的安装路径。可以通过命令行工具CMD执行如下指令来进行简单检测: ```powershell echo %PATH% ``` 确保输出结果中含有类似于`D:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.X\bin;...`这样的字符串片段存在即表示环境变量已经更新完毕。 #### 测试安装效果 最后一步是对新安装好的CUDA做基本的功能性测试。这可通过编写一段简单的C++代码实现GPU加速计算功能的小例子来检验其能否被编译运行以及利用到了GPU资源。例如下面这段用于求解向量加法的CUDA C/C++源码: ```cpp #include <stdio.h> __global__ void add(int n, float *x, float *y) { int index = threadIdx.x; int stride = blockDim.x; for (int i = index; i < n; i += stride) y[i] = x[i] + y[i]; } int main(void) { int N = 1 << 20; float *x, *y; cudaMallocManaged(&x, N*sizeof(float)); cudaMallocManaged(&y, N*sizeof(float)); for (int i = 0; i < N; i++) { x[i] = 1.0f; y[i] = 2.0f; } add<<<1, 256>>>(N, x, y); cudaDeviceSynchronize(); printf("%f\n", y[0]); cudaFree(x); cudaFree(y); } ``` 保存以上代码作为一个`.cu`文件并通过NVCC编译器构建可执行文件后再尝试运行它看是否会报错或者给出预期之外的结果作为最终判断依据之一[^2]。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信小海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值